专题:领域知识组织理论与实践

领域知识结构认知——基于大数据环境的适用性分析

  • 杨欣谊 ,
  • 苏新宁
展开
  • 1 南京大学信息管理学院 南京 210023;
    2 数据工程与知识服务省高校重点实验室(南京大学) 南京 210023;
    3 南京大学国家安全发展研究院 南京 210023
杨欣谊,博士研究生。

收稿日期: 2024-03-29

  修回日期: 2024-08-14

  网络出版日期: 2024-12-04

基金资助

本文系国家社会科学基金重点项目"大数据环境下领域知识加工与组织模式研究"(项目编号:20ATQ006)和江苏省研究生科研与实践创新计划项目"基于异质信息网络的领域知识结构演化分析"(项目编号:KYCX23_0077)研究成果之一。

Domain Knowledge Structure Cognition: An Applicability Analysis in Big Data Environments

  • Yang Xinyi ,
  • Su Xinning
Expand
  • 1 School of Information Management, Nanjing University, Nanjing 210023;
    2 Key Laboratory of Data Engineering and Knowledge Services in Provincial Universities (Nanjing University), Nanjing 210023;
    3 National Security Development Research Institute of Nanjing University, Nanjing 210023

Received date: 2024-03-29

  Revised date: 2024-08-14

  Online published: 2024-12-04

Supported by

This work is supported by the National Social Science Fund of China project titled “Research on Processing and Organization Pattern of Domain Knowledge in Big Data Environment”(Grant No.20ATQ006),and by the Graduate Research and Innovation of Jiangsu Province project title “Evolutionary Analysis of Domain Knowledge Structure based on Heterogeneous Information Network”(Grant No.KYCX23_0077).

摘要

[目的/意义] 大数据环境下,知识泛在、碎片化、规模庞大且动态变化,认知和把握已有领域知识结构,能为科学高效的领域知识组织提供借鉴。[方法/过程] 领域知识结构认知剖析知识单元关联形成的结构,体现组合形成的领域知识的原理、内涵及框架。从不同视角、环境、应用目的组织的知识呈现出不同的知识结构。《中国图书馆分类法》和《汉语主题词表》架构了知识单元之间的等级、等同和相关关系,前者侧重知识类别归属建构了树状跨领域的知识体系,后者通过概念组配、相关关系和多重隶属关联连接主题知识形成网状结构,表述主题关联拓展的知识。语义关联知识结构通过三元组连接形成语义网络,表述类别归属、属性和语义关系的知识,并由推理表述隐含知识。[结果/结论] 大数据环境下,知识单元之间建构了多重隶属、交叉连接的树状等级结构,表述泛在知识的类别归属;主题法实现了碎片化、细粒度知识的粗粒化、概念化表述,同时语义关系更加明确具体;语义关联的知识结构更加动态、灵活,能够提供基于推理的知识;领域知识结构向适用于大数据环境知识组织的方向演进。

本文引用格式

杨欣谊 , 苏新宁 . 领域知识结构认知——基于大数据环境的适用性分析[J]. 图书情报工作, 2024 , 68(23) : 4 -16 . DOI: 10.13266/j.issn.0252-3116.2024.23.001

Abstract

[Purpose/Significance] In big data environments, knowledge is ubiquitous, fragmented and large in scale.Recognizing and grasping the existing domain knowledge structures can provide a reference for scientific and efficient domain knowledge organization.[Method/Process] The cognition of domain knowledge structure helped explore the relationships between knowledge units.It showed the principles, connotations, and frameworks of domain knowledge formed by the combinations.Knowledge organized from different perspectives, contexts and applications could present different knowledge structures.The Chinese Library Classification and Chinese Thesaurus has provided hierarchical, equivalent, and related relationships between knowledge units.The former one focused on knowledge category construction to build a tree-like knowledge system, while the latter connected thematic knowledge through concept coordination, related relationships, and multiple memberships, forming a semantic network to express topic related and extended knowledge.The semantic knowledge associative structure constructed the triples to form a semantic network.These networks expressed knowledge related to category affiliation, attributes, and semantic relationships.And they represented implicit knowledge through axiomatic reasoning.[Result/Conclusion] In the big data environment, a tree-like hierarchical structure with multiple affiliations and cross-connections is constructed to represent the category attribution of ubiquitous knowledge.The thematic approach achieves the coarse-grained and conceptual representation of fragmented and fine-grained knowledge, while the semantic relations are more explicit and specific.Semantic associative knowledge structures are more flexible and extensible, which can provide reasoning knowledge.The domain knowledge structures are evolving towards being suitable for knowledge organization in big data environments.

参考文献

[1] 苏新宁.面向知识服务的领域知识组织纵论[J]. 情报学报, 2022, 41(9): 889-899. (SU X N. Knowledge service-oriented domain knowledge organization[J]. Journal of the China Society for Scientific and Technical Information, 2022, 41(9): 889-899.)
[2] 贾君枝. 面向数据网络的信息组织演变发展[J]. 中国图书馆学报, 2019, 45(5): 51-60. (JIA J Z. Development of information organization for the data Web[J]. Journal of library science in China, 2019, 45(5): 51-60.)
[3] 贾君枝, 崔西燕, 任明. 数据与知识双驱动的知识组织系统构建框架研究[J]. 情报理论与实践, 2023, 46(10): 157-162. (JIA J X, CUI X Y, REN M. Research on the construction framework of knowledge organization system driven by data and knowledge[J]. Information studies: theory & application, 2023, 46(10): 157-162.)
[4] BARABÁSI A L, PÓSFAI M. Network science[M]. Cambridge: Cambridge University Press, 2016.
[5] 王知津. 从情报组织到知识组织[J]. 情报学报, 1998, 17(3): 230-234. (WANG Z J. From information organization to knowledge organization[J]. Journal of the China Society for Scientific and Technical Information, 1998, 17(3): 230-234.)
[6] 蒋永福. 图书馆与知识组织——从知识组织的角度理解图书馆学[J]. 中国图书馆学报, 1999(5): 19-23. (JIANG Y F. Library and knowledge organization: understanding library science from the point of view of knowledge organization[J]. Journal of library science in China, 1999(5): 19-23.)
[7] 赵蓉英, 邱均平. 知识网络研究(Ⅰ)——知识网络概念演进之探究[J]. 情报学报, 2007, 26(2): 198-209. (ZHAO R Y, QIU J P. Study on knowledge network(partⅠ): the exploration of evolution of knowledge network[J]. Journal of the China Society for Scientific and Technical Information, 2007, 26(2): 198-209.)
[8] 赵蓉英. 知识网络研究(Ⅱ)——知识网络的概念, 内涵和特征[J]. 情报学报, 2007, 26(3): 470-476. (ZHAO R Y. Study on knowledge network(partⅡ): the notation and characters of knowledge network[J]. Journal of the China Society for Scientific and Technical Information, 2007, 26(3): 470-476.)
[9] HUANG L, CHEN X, ZHANG Y, et al. Identification of topic evolution: network analytics with piecewise linear representation and word embedding[J]. Scientometrics, 2022, 127(9): 5353-5383.
[10] XU F, MA L. Exploring the research themes and their relationships of LIS in China from 2013 to 2018 using co-word analysis[J]. The journal of academic librarianship, 2021, 47(1): 102295.
[11] 王伟, 杨建林. 基于引文网络重叠社团发现的图书情报领域学科主题结构分析[J]. 情报学报, 2020, 39(10): 1021-1033. (WANG W, YANG J L. Mapping the subject structure of library and information science through overlapping community detection in citation network[J]. Journal of the China Society for Scientific and Technical Information, 2020, 39(10): 1021-1033.)
[12] 马瑞敏, 倪超群. 作者耦合分析:一种新学科知识结构发现方法的探索性研究[J]. 中国图书馆学报, 2012, 38(2): 4-11. (MA R M, NI C Q. Author coupling analysis: an exploratory study on a new approach to discover intellectual structure of a discipline[J]. Journal of library science in China, 2012, 38(2): 4-11.)
[13] 王雪莹, 刘珊, 陈洪侃, 等. 中美知识融合网络与知识扩散网络对比[J]. 情报杂志, 2024, 43(5): 167-175, 166. (WANG X Y, LIU S, CHEN H K, et al. Knowledge integration network and knowledge diffusion network between China and the United States of America[J]. Journal of intelligence, 2024, 43(5): 167-175, 166.)
[14] 陈雪龙, 镇培. 知识网络的知识完备性测度方法研究[J]. 情报学报, 2014, 33(5): 465-480. (CHEN X L, ZHEN P. Measure of knowledge completeness in knowledge network[J]. Journal of the China Society for Scientific and Technical Information, 2014, 33(5): 465-480.)
[15] 滕广青. 基于频度演化的领域知识关联关系涌现[J]. 中国图书馆学报, 2018, 44(3): 79-95. (TENG G Q. Emergence of correlation in domain know ledge based on frequency evolution[J]. Journal of library science in China, 2018, 44(3): 79-95.)
[16] 李雪思, 张智雄, 王宇飞, 等. 领域知识演化分析方法综述[J]. 数据分析与知识发现, 2024, 8(1): 1-15. (LI X S, ZHANG Z X, WANG Y F, et al. A review on methods for domain knowledge evolution analysis[J]. Data analysis and knowledge discovery, 2024, 8(1): 1-15.)
[17] 张发亮, 刘君杰, 周沫. 领域知识结构基础理论及构建研究[J]. 情报杂志, 2018, 37(2): 188-193. (ZHANG F L, LIU J J, ZHOU M. On the basic theory and construction of field knowledge structure[J]. Journal of intelligence, 2018, 37(2): 188-193.)
[18] 胡昌平, 陈果. 领域知识网络的层次结构与微观形态探证——基于k-core层次划分的共词分析方法[J]. 情报学报, 2014, 33(2): 130-139. (HU C P, CHEN G. An exploration of hierarchical domain knowledge network and its micro-morphology based on co-word analysis with reliable relations[J]. Journal of the China Society for Scientific and Technical Information, 2014, 33(2): 130-139.)
[19] 王昊, 邓三鸿, 苏新宁. 我国图书情报学科知识结构的建立及其演化分析[J]. 情报学报, 2015, 34(2): 115-128. (WANG H, DENG S H, SU X N. Construction and evolution analysis on disciplinary knowledge structure of Chinese LIS[J]. Journal of the China Society for Scientific and Technical Information, 2015, 34(2): 115-128.)
[20] ABDO A H, COINTET J P, BOURRET P, et al. Domain-topic models with chained dimensions: charting an emergent domain of a major oncology conference[J]. Journal of the Association for Information Science and Technology, 2022, 73(7): 992-1011.
[21] 苏新宁. 知识组织的科学理论阐释[J]. 图书与情报, 2013(6): 1-7. (SU X N. Scientific theory of knowledge organization[J]. Library & information, 2013(6): 1-7.)
[22] 邵作运, 李秀霞. 基于引文耦合和概念格的学科交叉知识结构探测[J]. 图书情报工作, 2015, 59(8): 78-86. (SHAO Z Y, LI X X. Detecting interdisciplinary knowledge structure based on concept lattice and bibliographic coupling[J]. Library and information service, 2015, 59(8): 78-86.)
[23] 张卫, 王昊, 邓三鸿, 等. 电子政务领域中文术语层次关系识别研究[J]. 情报学报, 2021, 40(1): 62-76. (ZHANG W, WANG H, DENG S H, et al. Research on hierarchy identification of Chinese terms in the field of e-government[J]. Journal of the China Society for Scientific and Technical Information, 2021, 40(1): 62-76.)
[24] 王伟, 梁继文, 杨建林. 基于引文网络的领域主题层次结构识别方法研究[J]. 图书情报工作, 2022, 66(17): 1-12. (WANG W, LIANG J W, YANG J L. Research on the identification method of the topic hierarchical structure in a domain based on the citation network[J]. Library and information service, 2022, 66(17): 1-12.)
[25] 马志远, 高颖, 张强, 等.融合语义与结构信息的知识图谱补全模型研究[J]. 数据分析与知识发现, 2024, 8(4): 39-49. (MA Z Y, GAO Y, ZHANG Q, et al. Research on the semantic and structure fusion-based knowledge graph completion model[J]. Data analysis and knowledge discovery, 2024, 8(4): 39-49)
[26] 杨鑫, 陈涛, 夏焱. 基于Schema.org的文化遗产一体化本体模型构建研究[J]. 图书情报工作, 2024, 68(2): 100-109. (YANG X, CHEN T, XIA Y. Research on the integrated ontology model construction of cultural heritage based on schema.org[J]. Library and information service, 2024, 68(2): 100-109.)
[27] 相雅凡, 刘东苏, 马续补, 等. 面向信息公开的突发公共卫生事件知识表示模型构建[J]. 情报学报, 2024, 43(5): 538-552. (XIANG Y F, LIU D S, MA X B, et al. Construction of a knowledge representation model in public health emergencies for information disclosure[J]. Journal of the China Society for Scientific and Technical Information, 2024, 43(5): 538-552.)
[28] JI S, PAN S, CAMBRIA E, et al. A survey on knowledge graphs: representation, acquisition, and applications[J]. IEEE transactions on neural networks and learning systems, 2022, 33(2): 494-514.
[29] 王楚童, 李明达, 孙孟轩, 等. 融合大规模医学事实的跨语言双层知识图谱[J/OL]. 软件学报: 1-15[2024-09-13]. https://doi.org/10.13328/j.cnki.jos.007173.(WANG C T, LI M D, SUN M X, et al. Cross-language bilayer knowledge graph with large-scale medical facts [J/OL]. Journal of software (in Chinese): 1-15[2024-09-13]. https://doi.org/10.13328/j.cnki.jos.007173.)
[30] National Library of Medicine. Medical Subject Headings (MeSH) [EB/OL]. [2024-09-13]. https://meshb.nlm.nih.gov/.
[31] SUN Y, BARBER R, GUPTA M, et al. Co-author relationship prediction in heterogeneous bibliographic networks[C]//2011 International conference on advances in social networks analysis and mining. Kaohsiung: IEEE, 2011: 121-128.
[32] 马海云, 薛翔. 面向知识服务的领域知识结构研究[J]. 情报学报, 2022, 41(1): 73-82. (MA H Y, XUE X. Research on domain knowledge structure oriented to knowledge services[J]. Journal of the China Society for Scientific and Technical Information, 2022, 41(1): 73-82.)
[33] 张智雄, 赵旸, 刘欢. 构建面向实际应用的科技文献自动分类引擎[J]. 中国图书馆学报, 2022, 48(4): 104-115. (ZHANG Z X, ZHAO Y, LIU H. Construction of a practical application-oriented automatic classification engine for scientific literature[J]. Journal of library science in China, 2022, 48(4): 104-115.)
[34] 赵旸, 张智雄, 刘欢. 基于层次分类法的中文医学文献分类研究[J]. 图书馆学研究, 2021(21): 49-55, 61. (ZHAO Y, ZHANG Z X, LIU H. A research on automatic classification of Chinese medical literature based on hierarchical classification[J]. Research on library science, 2021(21): 49-55, 61.)
[35] 陈瑞, 曾建勋. 叙词表集成化体系及应用推进研究[J]. 情报学报, 2022, 41(4): 401-411. (CHEN R, ZENG J X. Research on thesaurus integration systems and the promotion of their application[J]. Journal of the China Society for Scientific and Technical Information, 2022, 41(4): 401-411.)
[36] 吴霞, 曾建勋, 吴雯娜. 汉语主题词表生物、医学、农业领域顶层本体语义类型框架研究[J]. 情报科学, 2022, 40(1): 94-101. (WU X, ZENG J X, WU W N. Study on the semantic type framework for top-level ontology of Chinese Thesaurus(biology, medicine and agriculture fields)[J]. Information science, 2022, 40(1): 94-101.)
[37] Princeton University. "About WordNet." WordNet[EB/OL]. [2024-09-13]. https://wordnet.princeton.edu/.
[38] SPEER R, CHIN J, HAVASI C. ConceptNet 5.5: an open multilingual graph of general knowledge[C]//Proceedings of the thirty-first AAAI conference on artificial intelligence. San Francisco: AAAI Press, 2017: 4444-4451.
[39] 陈翔, 黄璐, 倪兴兴, 等. 基于动态语义网络分析的主题演化路径识别研究[J]. 情报学报, 2021, 40(5): 500-512. (CHEN X, HUANG L, NI X X, et al. Identifying topic evolutionary pathways through dynamic semantic network analytics[J]. Journal of the China Society for Scientific and Technical Information, 2021, 40(5): 500-512.)
[40] Google. Freebase data dumps [EB/OL]. [2024-09-13]. https://developers.google.com/freebase/data.
[41] JAIN S. Question answering over knowledge base using factual memory networks[C]// Proceedings of the NAACL Student Research Workshop. San Diego: Association for Computational Linguistics, 2016: 109-115.
文章导航

/