[Purpose/Significance] This study aims to analyze the development and successful international practices of Research Data Infrastructure (RDI) to explore its application and practice within China, especially in the Guangdong-Hong Kong-Macao Greater Bay Area International Science and Technology Innovation Center. The goal is to provide references and insights for China’s RDI theoretical research and construction practices, thereby promoting the efficient management and utilization of China’s scientific and technological information resources. [Method/Process] Using case study approach, this study took the Greater Bay Area International Science and Technology Innovation Center as a case. It first systematically reviewed the development background of RDI and its application practices abroad. Then, it constructed an RDI framework for the Greater Bay Area and analyzed its sustainable operation mechanisms. [Result/Conclusion] The RDI framework of the Greater Bay Area International Science and Technology Innovation Center encompasses key aspects such as data collection, processing, publishing, and utilization. Its sustainable operation mechanisms include management mechanisms, driving mechanisms, collaborative mechanisms, safeguarding mechanisms, and evaluation mechanisms. The establishment of this framework and mechanisms could provide significant reference for the Greater Bay Area and the whole country. It also provides a strong support for the management, open sharing, and technological innovation of research data in China. In the future, it is necessary to further strengthen the theoretical research and practices of RDI construction and operation to maximize the utilization of research data resources and comprehensively enhance China’s capability for scientific and technological innovation.
[1] 邓仲华, 李志芳. 科学研究范式的演化——大数据时代的科学研究第四范式[J]. 情报资料工作, 2013(4): 19-23. (DENG Z H, LI Z F. The evolution of scientific research paradigm: the fourth paradigm of scientific research in the era of big data[J]. Information and documentation services, 2013(4): 19-23.)
[2] 科学数据共享调研组. 科学数据共享工程的总体框架[J]. 中国基础科学, 2003(1): 65-70. (Scientific data sharing research group . General framework for scientific data sharing projects[J]. China basic science, 2003(1): 65-70.)
[3] 中共中央国务院. 粤港澳大湾区发展规划纲要[EB/OL]. [2024-06-20]. https://www.gov.cn/zhengce/2019-02/18/content_5366593.htm#1. (CPC Central Committee and State Council. The outline of the plan for the development of the Guangdong-Hong Kong-Macao Greater Bay Area[EB/OL]. [2024-06-20]. https://www.gov.cn/zhengce/2019-02/18/content_5366593.htm#1.)
[4] Riding the wave-how Europe can gain from the rising tide of scientific data-final report of the high level expert group on scientific data[EB/OL]. [2024-06-20]. http://ec.europa.eu/information_society/newsroom/cf/document.cfm?action=display&doc_id=707.
[5] A surfboard for riding the wave-towards a four country action program on research data[EB/OL]. [2024-06-20]. http://repository.jisc.ac.uk/6200/1/KE_Surfboard_Riding_the_Wave_Screen.pdf.
[6] The evolving landscape of federated research data infrastructures[EB/OL]. [2024-06-20]. http://repository.jisc.ac.uk/6730/1/Knowledge_Exchange_The_Evolving_Landscape_of_Federated_Research_Data_Infrastructures_Nov_2017.pdf.
[7] EUDAT CDI - Data shared and preserved across borders and disciplines[EB/OL]. [2024-06-20]. https://www.eudat.eu/sites/default/files/CDI_Brochure_16_jan_2018_web.pdf.
[8] The Australian research data infrastructure strategy[EB/OL]. [2024-06-20]. https://docs.education.gov.au/system/files/doc/other/the_australian_research_data_infrastructure_strategy.pdf.
[9] FRAN B, ROSS W, JOHN W. Building global infrastructure for data sharing and exchange through the research data alliance[EB/OL]. [2024-06-20]. http://www.dlib.org/dlib/january14/01guest_editorial.print.html.
[10] 钱锦琳, 刘桂锋. 国外科研数据管理研究综述[J]. 情报理论与实践, 2017, 40(10): 130-134. (QIAN J L, LIU G F. A review of research data management abroad[J]. Information studies: theory & application, 2017, 40(10): 130-134.)
[11] 魏悦, 刘桂锋. 基于数据生命周期的国外高校科学数据管理与共享政策分析[J]. 情报杂志, 2017, 36(5): 153-158. (WEI Y, LIU G F. Analysis of research data management and sharing policy in foreign universities based on data lifecycle[J]. Journal of intelligence, 2017, 36(5): 153-158.)
[12] 司莉, 邢文明. 国外科学数据管理与共享政策调查及对我国的启示[J]. 情报资料工作, 2013(1): 61-66. (SI L, XING W M. Scientific data management and sharing policies in foreign countries: investigation and inspiration to us[J]. Information and documentation services, 2013(1): 61-66.)
[13] 顾立平. 科研模式变革中的数据管理服务:实现开放获取、开放数据、开放科学的途径[J]. 中国图书馆学报, 2018, 44(6): 43-58. (GU L P. Data management services in the transition of research model: an approach of implementing open access, open data and open science[J]. Journal of library science in China, 2018, 44(6): 43-58.)
[14] 王敬, 王彦兵. 国外科研数据基础设施研究及实践的调研与分析[J]. 情报资料工作, 2016(6): 99-104. (WANG J, WANG Y B. Investigation and analysis of foreign research data infrastructure research and practice[J]. Information and documentation services, 2016(6): 99-104.)
[15] 张丽丽, 温亮明, 石蕾, 等. 国内外科学数据管理与开放共享的最新进展[J]. 中国科学院院刊, 2018, 33(8): 774-782. (ZHANG L L, WEN L M, SHI L, et al. Progress in scientific data management and sharing [J]. Bulletin of Chinese Academy of Sciences, 2018, 33(8): 774-782.)
[16] 李立睿, 邓仲华. “互联网+”视角下的科学数据生态系统研究[J]. 图书与情报, 2016(2): 66-71. (LI L R, DENG Z H. Research on scientific data ecosystem from the perspective of “Internet+” [J]. Library & information, 2016(2): 66-71.)
[17] 丁宁, 马浩琴. 国外高校科学数据生命周期管理模型比较研究及借鉴[J]. 图书情报工作, 2013, 57(6): 18-22. (DING N, MA H Q. The comparative research and reference on the scientific data lifecycle management in foreign universities[J]. Library and information service, 2013, 57(6): 18-22.)
[18] 沈志宏, 张晓林, 黎建辉. OpenCSDB:关联数据在科学数据库中的应用研究[J]. 中国图书馆学报, 2012, 38(5): 17-26. (SHENG Z H, ZHANG X L, LI J H. OpenCSDB: application of linked data in scientific database[J]. Journal of library science in China, 2012, 38(5): 17-26.)
[19] 沈志宏, 刘筱敏, 郭学兵, 等. 关联数据发布流程与关键问题研究——以科技文献、科学数据发布为例[J]. 中国图书馆学报, 2013, 39(2): 53-62. (SHENG Z H, LIU Y M, GUO X B, et al. A research on publishing workflow and key issues of linked data: experience with publishing scientific literature and scientific data as linked data[J]. Journal of library science in China, 2013, 39(2): 53-62.)
[20] 黎建辉, 周园春, 胡良霖, 等. 中国科学院科学数据云建设与服务[J]. 大数据, 2016, 2(6): 3-13. (LI J H, ZHOU Y C, HU L L, et al. Scientific data cloud construction and service of Chinese Academy of Sciences[J]. Big data research, 2016, 2(6): 3-13.)
[21] 王明明, 王卷乐, 赵强, 等. ICPSR科学数据中心的建设经验与启示[J]. 中国科技资源导刊, 2017, 49(6): 100-107. (WANG M M, WANG J L, ZHAO Q, et al. Experiences and enlightenment of ICPSR scientific data center development[J]. China science & technology resources review, 2017, 49(6): 100-107.)
[22] 曾粤亮, 梁心怡, 徐琳琳, 等. 协同视角下科研数据知识库联盟运行策略研究——以加拿大FRDR平台为例[J]. 情报理论与实践, 2023, 46(1): 61-71. (ZENG Y L, LIANG X Y, XU L L, et al. Research on the operation strategies of research data repository alliance from the perspective of collaboration: take FRDR as an example[J]. Information studies: theory & application, 2023, 46(1): 61-71.)
[23] 都平平, 李雨珂, 陈越. 高校科研数据资产化存储及数据复用权益许可研究[J]. 图书情报工作, 2022, 66(3): 45-53. (DU P P, LI Y K, CHEN Y. Research on asset storage and data reuse rights license of scientific research data in colleges and universities[J]. Library and information service, 2022, 66(3): 45-53.)
[24] 刘桂锋, 阮冰颖, 苏文成. 科研人员视角下科学数据安全风险识别框架探究[J]. 图书馆建设, 2022(4): 81-91. (LIU G F,RUAN B Y, SU W C. Research on scientific data security risk identification framework from the perspective of scientific researchers[J]. Library development, 2022(4): 81-91.)
[25] 彭玉芳, 陈将浩, 何志强. 基于机器学习和深度学习的南海证据性数据抽取算法比较与应用[J]. 现代情报, 2022, 42(2): 55-69. (PENG Y F, CHEN J H, HE Z Q. Comparison and application of South China Sea evidence data extraction algorithms based on the machine learning and the deep learning [J]. Journal of modern information, 2022, 42(2): 55-69.)
[26] 孙红蕾, 马岩, 郑建明. 城市信息基础设施效率测评研究[J]. 图书馆论坛, 2017, 37(5): 1-9. (SUN H L, MA Y, ZHENG J M. Efficiency evaluation of urban information infrastructure [J]. Library tribune, 2017, 37(5): 1-9.)