[1] 刘如, 张惠娜, 周京艳. 科技决策智能情报[M]. 北京: 科学技术文献出版社, 2022. (LIU R, ZHANG H N, ZHOU J Y. S&T decision-making and smart intelligence[M]. Beijing: Scientific and Technical Documentation Press, 2022.)
[2] 张涛, 马海群. 智能情报分析中算法风险及其规制研究[J]. 图书情报工作, 2021, 65(12): 47-56. (ZHANG T, MA H Q. Research on algorithm risk and regulation in intelligent intelligence analysis[J]. Library and information service, 2021, 65(12): 47-56.)
[3] 靳庆文. 情报分析中的可解释性技术及其评价方法研究[J]. 情报资料工作, 2023, 44(4): 24-34. (JIN Q W. Research on interpretability technology and evaluation method in information analysis[J]. Information and documentation services, 2023, 44(4): 24-34.)
[4] 陆伟, 李鹏程, 张国标, 等. 学术文本词汇功能识别—基于BERT向量化表示的关键词自动分类研究[J]. 情报学报, 2020, 39(12): 1320-1329. (LU W, LI P C, ZHANG G B, et al. Recognition of lexical functions in academic texts: automatic classification of keywords based on BERT vectorization[J]. Journal of the China Society for Scientific and Technical Information, 2020, 39(12): 1320-1329.)
[5] 翟羽佳, 田静文, 赵玥. 基于BERT-BiLSTM-CRF模型的算法术语抽取与创新演化路径构建研究[J]. 情报科学, 2022, 40(4): 71-78. (ZHAI Y J, TIAN J W, ZHAO Y, Research on algorithm term extraction and innovation evolution path construction based on BERT-BiLSTM-CRF model[J]. Information science, 2022, 40(4): 71-78.)
[6] 马雨萌, 黄金霞, 王昉, 等. 融合BERT与多尺度CNN的科技政策内容多标签分类研究[J]. 情报杂志, 2022, 41(11): 157-163. (MA Y M, HUANG J X, WANG F, et al. Research on multi-label classification of S&T policy content combining BERT and multi-scale CNN[J]. Journal of intelligence, 2022, 41(11): 157-163.)
[7] 霍朝光, 霍帆帆, 王婉如, 等. 基于WordBERT和BiLSTM的政策工具自动分类方法研究[J]. 图书情报知识, 2023, 40(3): 129-138. (HUO C G, HUO F F, WANG W R, et al. Automatic classification method of policy tools based on WordBERT and BiLSTM[J]. Document, information & knowledge, 2023, 40(3): 129-138.)
[8] 沈思, 陈猛, 冯暑阳, 等. ChpoBERT:面向中文政策文本的预训练模型[J]. 情报学报, 2023, 42(12): 1487-1497. (SHEN S, CHEN M, FENG S Y, et al. ChpoBERT: a pre-trained model for Chinese policy texts[J]. Journal of the China Society for Scientific and Technical Information, 2023, 42(12): 1487-1497.)
[9] XIE Q, ZHANG X, DING Y, et al. Monolingual and multilingual topic analysis using LDA and BERT embeddings [J]. Journal of informetrics.2020, 14(3): 101055.
[10] MILES S, YAO L, MENG W. Comparing PSO-based clustering over contextual vector embeddings to modern topic modeling[J]. Information processing & management.2022, 59(3): 102921.
[11] LAMSIYAH S, MAHDAOUY A, ALAOUI S. Unsupervised extractive multi-document summarization method based on transfer learning from BERT multi-task fine-tuning[J]. Journal of information science.2023, 49(1): 164-182.
[12]CHENGZHI Z, YI X, WENKE H, et al. Automatic recognition and classification of future work sentences from academic articles in a specific domain[J]. Journal of informetrics.2023, 17(1): 101373.
[13] 梁峥, 王宏志, 戴加佳, 等.预训练语言模型实体匹配的可解释性[J]. 软件学报, 2023, 34(3): 1087-1108. (LIANG Z, WANG H Z, DAI J J, et al. Interpretability of entity matching based on pre-trained language model[J]. Journal of software, 2023, 34(3): 1087-1108.)
[14] 李伟卿, 池毛毛, 王伟军.面向用户长短期偏好调节的可解释个性化推荐方法研究[J]. 图书情报工作, 2021, 65(12): 101-111. (LI W Q, CHI M M, WANG W J. Explainable personalized recommendation method based on adjustment of users’ long- and short-term preferences[J]. Library and information service, 2021, 65(12): 101-111.)
[15] 易明, 姚玉佳, 胡敏.融合XGBoost与SHAP的政务新媒体公共价值共识可解释性模型——以“今日头条”十大市级政务号为例[J]. 图书情报工作, 2022, 66(16): 36-47. (YI M, YAO Y J, HU M. An Interpretable model for new government media public value consensus integrating XGBoost and SHAP: taking the top 10 municipal government accounts of the Jinri Toutiao as an example[J]. Library and information service, 2022, 66(16): 36-47.)
[16] PRUTHI D, GUPTA M, DHINGRA B, et al. Learning to deceive with attention-based explanations[J]. arXiv preprint arXiv:1909.07913, 2020.
[17] MEISTER C, LAZOV S, AUGENSTEIN I, et al.Is sparse attention more interpretable?[J]. arXiv preprint arXiv:2106.01087, 2021.
[18] HAO Y, DONG L, WEI F, et al. Self-attention attribution: Interpreting information interactions inside transformer[J]. arXiv preprint arXiv:2004.11207v1, 2021.
[19] EBAID A, THIRUMURUGANATHAN S, AREF W G, et al. Explainer: entity resolution explanations[C]//2019 IEEE 35th international conference on data engineering (ICDE). Macao: IEEE, 2019: 2000-2003.
[20] PEETERS R, BIZER C. Dual-objective fine-tuning of BERT for entity matching[C]//47th international conference on Very Large Data Bases. Copenhagen: ACM, 2021: 1913-1921.
[21] 肖纪文.面向局部可解释性机器学习的数据故事生成方法研究[J]. 图书情报工作, 2023, 67(2): 98-107. (XIAO J W. Research on the method of data story generation for local interpretable machine learning[J]. Library and information service, 2023, 67(2): 98-107.)
[22] WALLACE E, FENG S, KANDPAL N, et al. Universal adversarial triggers for attacking and analyzing NLP[J]. arXiv preprint arXiv:1908.07125, 2019.
[23] VALIPOUR M, LEE E S A, JAMACARO J R, et al.Unsupervised transfer learning via BERT neuron selection[J]. arXiv preprint arXiv:1912.05308, 2019.
[24] 高广尚.可解释推荐模型中的可解释性方法研究综述[J/OL]. 数据分析与知识发现:1-17[2024-01-25]. http://kns.cnki.net/kcms/detail/10.1478.G2.20240117.1116.026.html. (GAO G S. A survey of explainability methods in explainable recommendation models[J/OL]. Data analysis and knowledge discovery:1-17[2024-01-25]. http://kns.cnki.net/kcms/detail/10.1478.G2.20240117.1116.026.html.)
[25] ATANASOVA P, SIMONSEN J G, LIOMA C, et al. A diagnostic study of explainability techniques for text classification[J]. arXiv preprint arXiv:2009.13295, 2020.
[26] 张涛, 马海群.智能情报分析中数据与算法风险识别模型构建研究[J]. 情报学报, 2022, 41(8): 832-844. (ZHANG T, MA H Q. Research on the construction of data and algorithm risk identification model in intelligent intelligence analysis[J]. Journal of the China Society for Scientific and Technical Information, 2022, 41(8): 832-844.)
[27] BASTINGS J, FILIPPOVA K. The elephant in the interpretability room: why use attention as explanation when we have saliency methods?[J]. arXiv preprint arXiv:2010.05607, 2020.
[28] DEVLIN J, CHANG M W, LEE K, et al, BERT: pre-training of deep bidirectional transformers for language understanding[J]. arXiv preprint arXiv:1810.04805, 2019.
[29] 马海群, 张涛. 文献信息视阈下面向智慧服务的语料库构建研究[J]. 情报理论与实践, 2019, 42(6): 124-130. (ZHANG T, MA H Q. Research on the construction of smart service oriented corpus from the perspective of literature information[J]. Information studies: theory & application, 2019, 42(6): 124-130.)
[30] Clue benchmark [EB/OL]. [2024-07-11]. https://storage.googleapis.com/cluebenchmark/tasks/tnews_public.zip.