[1] ETKIN J. The hidden cost of personal quantification[J]. Journal of consumer research, 2016, 42(6): 967-984.
[2] 朱庆华, 徐孝婷, 赵宇翔, 等. 基于移动经验取样法的量化自我参与流程及内在机理研究[J]. 情报学报, 2022, 41(3): 217-228. (ZHU Q H, XU X T, ZHAO Y X, et al. Research on participation process and underlying mechanism of quantified self based on mobile experience sampling method[J]. Journal of the China Society for Scientific and Technical Information, 2022, 41(3): 217-228.)
[3] 徐孝婷, 朱庆华, 杨梦晴, 等. 面向个人健康信息管理的量化自我持续参与动机研究[J]. 情报学报, 2022, 41(3): 229-243. (XU X T, ZHU Q H, YANG M Q, et al. Sustained participation motivation of quantified self for personal health information management[J]. Journal of the China Society for Scientific and Technical Information, 2022, 41(3): 229-243.)
[4] 张茜, 谢卫红. 量化自我的隐私披露行为: 内涵特征、理论框架与研究展望[J]. 情报杂志, 2022, 41(9): 112-120. (ZHANG Q, XIE W H. Quantified self and privacy disclosure behavior: connotative features, theoretical framework, and research prospects[J]. Journal of intelligence, 2022, 41(9): 112-120.)
[5] 沈睿. App用户隐私政策阅读意愿的影响研究[D]. 上海: 华东师范大学, 2022. (SHEN R. Study on the influence of app users’ willingness to read privacy policy [D]. Shanghai: East China Normal University, 2022.)
[6] 张茜, 谢卫红, 王忠. 应对理论视角下量化自我的隐私悖论研究[J]. 情报杂志, 2023, 42(5): 175-183, 199. (ZHANG Q, XIE W H, WANG Z. Research on privacy paradox in quantified self from the perspective of coping theory[J]. Journal of intelligence, 2023, 42(5): 175-183, 199.)
[7] SWAN M. The quantified self: fundamental disruption in big data science and biological discovery[J]. Big data, 2013, 1(2): 85.
[8] GAO Y, LI H, LUO Y. An empirical study of wearable technology acceptance in healthcare[J]. Industrial management & data systems, 2015, 115(9): 1704-1723.
[9] 李宝库, 卢文君. 基于技术接受模型的用户量化自我持续参与意愿研究[J]. 情报探索, 2021(2): 1-7. (LI B K, LU W J. Research on users’ quantitative self sustained participation willingness based on technology acceptance model[J]. Information research, 2021(2): 1-7.)
[10] 胡德华, 张彦斐. 量化自我研究[J]. 图书馆论坛, 2018, 38(2): 1-7. (HU D H, ZHANG Y F. research on quantified self[J]. Library tribune, 2018, 38(2): 1-7.)
[11] BAUER R A. Consumer behavior as risk taking, dynamic marketing for a changing World[C]//Proceedings of the 43rd conference of the American Marketing Association. Chicago: American Marketing Association, 1960: 389-398.
[12] JACOBY J, KAPLAN L B. The components of perceived risk[C]//Proceedings of the third annual conference of Association for Consumer Research. Chicago: Association for Consumer Research, 1972: 382-393
[13] JARVENPAA S L, TODD P A. Consumer reactions to electronic shopping on the World Wide Web[J]. International journal of electronic commerce, 1996, 1(2): 59-88.
[14] CASES A S. Perceived risk and risk-reduction strategies in Internet shopping[J]. The international review of retail, distribution and consumer research, 2002, 12(4): 375-394.
[15] HASSAN A M, KUNZ M B, PEARSON A W, et al. Conceptualization and measurement of perceived risk in online shopping[J]. Marketing management journal, 2006, 16(1): 138-147.
[16] 张一涵, 袁勤俭, 沈洪洲. 感知风险理论及其在信息系统研究领域的应用与展望[J]. 现代情报, 2022, 42(5): 149-159. (ZHANG Y H, YUAN Q J, SHEN H Z. Perceived risk theory and its application and prospect in the field of information system research[J]. Journal of modern information, 2022, 42(5): 149-159.)
[17] MARTIN S S, CAMARERO C. How perceived risk affects online buying[J]. Online information review, 2009, 33(4) :629-654.
[18] MIN J. Personal information concerns and provision in social network sites: Interplay between secure preservation and true presentation[J]. Journal of the Association for Information Science and Technology, 2016, 67(1): 26-42.
[19] 金艳飞. 社交电商信息内容对消费者感知风险的影响研究[D]. 杭州: 杭州师范大学, 2023. (JIN Y F. Research on the impact of social e-commerce information content on consumers’ perceived risk [D]. Hangzhou: Hangzhou Normal University, 2023.)
[20] 姚丽娜, 冯叶彤. 生鲜水产品负面在线评论对消费者购买意愿的影响——以京东生鲜为例[J]. 中国渔业经济, 2023, 41(2): 73-81. (YAO L N, FENG Y T. The impact of negative online reviews of fresh aquatic products on consumer purchase intention—taking JD fresh as an example. Chinese fisheries economics, 2023, 41(2): 73-81)
[21] ZHOU S. LIU Y. Effects of perceived privacy risk and disclosure benefits on the online privacy protection behaviors among Chinese teens[J]. Sustainability, 2023, 15(2): 1657.
[22] ROHDEN S F, ZEFERINO D G. Recommendation agents: an analysis of consumers’ risk perceptions toward artificial intelligence[J]. Electronic commerce research, 2022, 23: 2035-2050.
[23] JOINSON A N, REIPS U D, BUCHANAN T, et al. Privacy, trust, and self-disclosure online[J]. Human computer interaction, 2010, 25(1): 1-24.
[24] 孙霄凌, 程阳, 朱庆华. 社会化搜索中用户隐私披露行为意向的影响因素研究[J]. 情报杂志, 2017, 36(10): 172-179, 201. (SUN X L, CHENG Y, ZHU Q H. Exploring the factors of social search user’s privacy disclosure intention[J]. Journal of intelligence, 2017, 36(10): 172-179, 201.)
[25] LI Y, KOBSA A. Context and privacy concerns in friend request decisions[J]. Journal of the Association for Information Science and Technology, 2020, 71(6): 632-643.
[26] 朱侯, 张明鑫. 移动APP用户隐私信息设置行为影响因素及其组态效应研究[J]. 情报科学, 2021, 39(7): 54-62. (ZHU H, ZHANG M X. Study on the influencing factors and configurational effects of mobile APP users’ privacy information settings behavior[J]. Information science, 2021, 39(7): 54-62.)
[27] CHEN R. Living a private life in public social networks: an exploration of member self-disclosure[J]. Decision support systems, 2013, 55(3): 661-668.
[28] 陈渝, 尹依. 移动短视频APP用户信息分享行为实证研究——感知风险的调节效应[J]. 重庆理工大学学报(社会科学), 2023, 37(8): 82-94. (CHEN Y, YIN Y. Empirical study on information sharing behavior of mobile short video app users: the moderating effect of perceived risk [J]. Journal of Chongqing University of Technology (social science), 2023, 37(8): 82-94.)
[29] 张继东, 蔡雪. 基于用户行为感知的移动社交网络信息服务持续使用意愿研究[J]. 现代情报, 2019, 39(1): 70-77. (ZHANG J D, CAI X. Research on continuance usage intention of mobile social network information service based on user behavior perception[J]. Journal of modern information, 2019, 39(1): 70-77.)
[30] AMIRTHA R, SIVAKUMAR V J, HWANG Y. Influence of perceived risk dimensions on e-shopping behavioural intention among women: a family life cycle stage perspective[J]. Journal of theoretical and applied electronic commerce research, 2020, 16(3): 320-355.
[31] 张茜, 谢卫红, 王永健, 等. 量化自我隐私顾虑的前因组态对隐私披露意愿的影响研究——权力-责任均衡视角[J/OL]. 情报杂志, 1-9[2024-07-28]. http://kns.cnki.net/kcms/detail/61.1167.G3.20240411.0835.006.html. (ZHANG Q, XIE W H, WANG Y J, et al. Study on the impact of the antecedent configuration of quantified self-privacy concerns on the willingness to disclose privacy: a perspective of power-responsibility equilibrium [J/OL]. Journal of intelligence, 1-9[2024-07-28]. http://kns.cnki.net/kcms/detail/61.1167.G3.20240411.0835.006.html.)
[32] 俞艺涵, 付钰, 吴晓平. 基于Shannon信息熵与BP神经网络的隐私数据度量与分级模型[J]. 通信学报, 2018, 39(12): 10-17. (YU Y H, FU Y, WU X P. Metric and classification model for privacy data based n Shannon information entropy and BP neural network [J]. Journal of communications, 2018, 39(12): 10-17.)
[33] 严海伦. 基于知识图谱的网络敏感文本分级方法研究[D]. 武汉: 华中科技大学, 2022. (YAN, H L. Research on Grading Method of Online Sensitive Texts Based on Knowledge Graph [D]. Wuhan: Huazhong University of Science and Technology, 2022.)
[34] 李瀛, 王冠楠. 网络新闻敏感信息识别与风险分级方法研究[J]. 情报理论与实践, 2022, 45(4): 105-112. (LI Y, WANG G N. Research on identification and risk grading method of network news sensitive information [J]. Information studies: theory & application, 2022, 45(4): 105-112.)
[35] 董士豪, 郑朗, 王特. 基于知识图谱技术的上市企业产业链风险预测[J]. 网络安全与数据治理, 2023, 42(9): 21-28. (DONG S H, ZHENG L, WANG T. Risk prediction of listed companies’ industrial chain based on knowledge graph technology[J]. Cyber security and data governance, 2023, 42(9): 21-28.)
[36] ZHANG J, ZHENG W, WANG S. The study of the effect of online review on purchase behavior: comparing the two research methods[J]. International journal of crowd science, 2020, 4(1): 73-86.
[37] GARVEY P R, LANSDOWNE Z F. Risk matrix: an approach for identifying, assessing, and ranking program risks[J]. Air Force J. Logist, 1998, 22: 18-21.
[38] DEVLIN J, CHANG M W, LEE K, et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding[C]//Proceedings of the 2019 conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Minneapolis: Association for Computational Linguistics, 2019: 4171-4186.
[39] MACQUEEN J. Some methods for classification and analysis of multivariate observations[C]//Proceedings of the fifth Berkeley symposium on mathmatical statistics and probability. Oakland: University of California Press, 1967: 281-297.
[40] CLORE G, SCHWARZ N, CONWAY M. Affective causes and consequences of social information processing[J]. Handbook of social cognition, 1994, 1: 323-417.
[41] 张涛. 移动商务用户隐私信息披露风险因素及风险评估方法研究[D]. 昆明: 云南财经大学, 2021. (ZHANG T. Research on risk factors and risk assessment methods of user privacy disclosure in mobile commerce [D]. Kunming: Yunnan University of Finance and Economics, 2021.)