[1] 陈云伟, 张志强. 科技评价走出“ 破” 与“ 立” 困局的思考 与建 议[J]. 情报 学报, 2020, 39(8): 796-805. (CHEN Y W, ZHANG Z Q. Opinions on new science and technology evaluation methods[J]. Journal of the China Society for Scientific and Technical Information, 2020, 39(8): 796-805.)
[2] 陈云伟, 蒲虹君, 周海晨, 等. 新时代科学计量与科技评价工作发展新态势——2022科学计量与科技评价天府论坛后记[J]. 图书情报工作, 2023, 67(14): 130-140. (CHEN Y W, PU H J, ZHOU H C, et al. New trends of scientometrics & evaluation in the new era: postscript on 2022 Tianfu Forum on scientometrics & evaluation[J]. Library and information service, 2023, 67(14): 130-140.)
[3] 邱均平, 刘亚飞, 魏开洋. 科学交流视角下学术论文影响力多维评价[J]. 情报理论与实践, 2023, 46(6): 47-54. (QIU J P, LIU Y F, WEI K Y. Multi-dimensional evaluation of the impact of academic papers from the perspective of scientificcommunication[J]. Information studies: theory & application, 2023, 46(6): 47-54.)
[4] 中华人民共和国科学技术部. 科技部发展改革委教育部中 科院自然科学基金委关于印发《加强“ 从0 到1” 基础研究工作方案》的通知[EB/OL]. [2024-03-03]. https://www.most.gov.cn/xxgk/xinxifenlei/fdzdgknr/fgzc/gfxwj/gfxwj2020/202003/t20200303_152074.html. (Ministry of Science and Technology of the People’s Republic of China. Notice of the Ministry of Science and Technology, the Development and Reform Commission, the Ministry of Education, the Chinese Academy of Sciences, and the Natural Science Foundation of China on Issuing the “Plan for Strengthening Basic Research from 0 to 1”[EB/OL]. [2024-03-03]. https://www.most.gov.cn/xxgk/xinxifenlei/fdzdgknr/fgzc/gfxwj/gfxwj2020/202003/t20200303_152074.html.)
[5] 郭凤娇, 赵蓉英, 孙劭敏. 基于科学交流过程的学术论文影响力评价研究——以中国社会科学国际学术论文为例[J]. 情报学报, 2020, 39(4): 357-366. (GUO F J, ZHAO R Y, SUN S M. Evaluation of academic papers impact based on scientificcommunication path: a case study of Chinese international academic papers in social sciences[J]. Journal of the China Society for Scientific and Technical Information, 2020, 39(4): 357-366.)
[6] 霍朝光, 董克, 魏瑞斌. 学术影响力预测研究进展述评[J]. 情报学报, 2021, 40(7): 768-779. (HUO C G, DONG K, WEI R B. Review of scientific impact prediction[J]. Journal of the China Society for Scientific and Technical Information, 2021, 40(7): 768-779.)
[7] STEGEHUIS C, LITVAK N, WALTMAN L. Predicting the long-term citation impact of recent publications[J]. Journal of informetrics, 2015, 9(3): 642-657.
[8] RUAN X, ZHU Y, LI J, et al. Predicting the citation counts of individual papers via a BP neural network[J]. Journal of informetrics, 2020, 14(3): 101039.
[9] XU J, LI M, JIANG J, et al. Early prediction of scientific impact based on multi-bibliographic features and convolutional neural network[J]. IEEE access, 2019, 7(7): 92248-92258.
[10] ABRISHAMI A, ALIAKBARY S. Predicting citation counts based on deep neural network learning techniques[J]. Journal of informetrics, 2019, 13(2): 485-499.
[11] FU L, ALIFERIS C. Using content-based and bibliometric features for machine learning models to predict citation counts in the biomedical literature[J]. Scientometrics, 2010, 85(1): 257-270.
[12] WANG F, FAN Y, ZENG A, et al. Can we predict ESI highly cited publications?[J]. Scientometrics, 2019, 118(1): 109-125.
[13] TANG X, ZHOU H, LI S. Predictable by publication: discovery of early highly cited academic papers based on their own features[J]. Library hi tech, 2023, 42(4): 1366-1384.
[14] 索传军, 盖双双, 周志超. 认知计算——单篇学术论文评价的新视角[J]. 中国图书馆学报, 2018, 44(1): 50-61. (SUO C J, GAI S S, ZHOU Z C. Cognitivecomputing: a new perspective for evaluating the individual academic paper[J]. Journal of library science in China, 2018, 44(1): 50-61.)
[15] 罗卓然, 蔡乐, 钱佳佳, 等. 学术论文创新贡献句识别研究[J]. 图书情报工作, 2021, 65(12): 93-100. (LUO Z R, CAI L, QIAN J J, et al. Research on the recognition of innovative contribution sentences of academic papers[J]. Library and information service, 2021, 65(12): 93-100.)
[16] 胡泽文, 任萍, 崔静静. 基于机器学习模型的科技论文潜在 “ 精品 ” 识别 研究 [J]. 情报 学报, 2023, 42(2): 189-202. (HU Z W, REN P, CUI J J. Study on identification of potential “Treasures” in massive papers based on machine learning models[J]. Journal of the China Society for Scientific and Technical Information, 2023, 42(2): 189-202.)
[17] 夏琬钧, 陈晓红, 江艳萍. 学术论文引用预测研究进展[J]. 图书 情报 工作, 2020, 64(6): 138-145. (XIA W J, CHEN X H, JIANG Y P, et al. Research on academic paper citation prediction[J]. Library and information service, 2020, 64(6): 138-145.)
[18] 苏新宁, 蒋勋. 促进学术创新才是学术评价的根本[J]. 情报资料工作, 2020, 41(3): 9-13. (SU X N, JIANG X. Foundation of academic evaluation: promote academic innovation[J]. Information and documentation services, 2020, 41(3): 9-13.)
[19] D O RTA -G O N Z Á L E Z P, S A N TA N A -J I M É N E Z Y. Characterizing the highly cited articles: a large-scale bibliometric analysis of the top 1% most cited research[J]. arXiv preprint, 2018, arXiv:1804.10436.
[20] POLYAKOV M, POLYAKOV S, IFTEKHAR M S. Does academic collaboration equally benefit impact of research across topics? The case of agricultural, resource, environmental and ecological economics[J]. Scientometrics, 2017, 113(3): 1385-1405.
[21] 王海涛, 谭宗颖, 陈挺. 论文被引频次影响因素研究[J]. 科学学研究, 2016, 34(2): 171-177. (WANG H T, TAN Z Y, CHEN T. Research on the factors affecting papers’ citation frequency [J]. Studies in science of science, 2016, 34(2): 171-177.)
[22] LISKIEWICZ T, LISKIEWICZ G, PACZESNY J. Factors affecting the citations of papers in tribology journals[J]. Scientometrics, 2021, 126(4): 3321-3336.
[23] 周海晨, 郑德俊, 郦天宇. 学术全文本的学术创新贡献识别探索 [J]. 情报学报, 2020, 39(8): 845-851. (ZHOU H C, ZHEN D J, LI T Y. Research on the identification of academic innovation contributions of full academic texts[J]. Journal of the China Society for Scientific and Technical Information, 2020, 39(8): 845-851.)
[24] WANG S, SCELLS H, KOOPMAN B, et al. Can ChatGPT write a good Boolean query for systematic review literature search?[J]. arXiv preprint, 2023, arXiv:2302.03495.
[25] 张颖怡, 章成志, 周毅, 等. 基于ChatGPT的多视角学术论文实体识别:性能测评与可用性研究[J]. 数据分析与知识发现, 2023, 7(9): 12-24. (ZHANG Y Y, ZHANG C Z, ZHOU Y, et al. ChatGPT-based scientific paper entity recognition: performance measurement and availability research[J]. Data analysis and knowledge discovery, 2023, 7(9): 12-24.)
[26] 智谱 AI. 智谱 AI推出 新一 代基 座模 型GLM-4[EB/OL]. [2024-06-16]. https://zhipuai.cn/devday. (ZHI PU AI. Zhi Pu AI launches a new generation base model GLM-4[EB/OL]. [2024-06-16]. https://zhipuai.cn/devday.)
[27] 白如江, 陈启明, 张玉洁, 等. 基于ChatGPT+Prompt的专利技术功效实体自动生成研究[J]. 数据分析与知识发现, 2024, 8(4): 14-25. (BAI R J, CHEN Q M, ZHANG Y J, et al. Generating effectiveness entities of patent technology based on ChatGPT+Prompt[J]. Data analysis and knowledge discovery, 2024, 8(4): 14-25.)
[28] LIN C Y. Rouge: a package for automatic evaluation of summaries[C]//Text summarization branches out. Barcelona: Association for Computational Linguistics, 2004: 74-81.
[29] RODRÍGUEZ P, BAUTISTA M A, GONZALEZ J, et al. Beyond One-Hot encoding: lower dimensional target embedding[J]. Image and visioncomputing, 2018, 75(7): 21-31.
[30] MIKOLOV T, KOMBRINK S, BURGET L, et al. Extensions of recurrent neural network language model[C]//2011 IEEE international conference on acoustics, speech and signal processing. Piscataway: IEEE, 2011: 5528-5531.
[31] PENNINGTON J, SOCHER R, MANNING C D. Glove: global vectors for word representation[C]//Proceedings of the 2014 conference on empirical methods in natural language processing. Qatar: Association for Computational Linguistics, 2014: 1532-1543.
[32] JOULIN A, GRAVE E, BOJANOWSKI P, et al. Bag of tricks for efficient text classification[J]. arXiv preprint, 2016, arXiv: 1607.01759.
[33] 魏绪秋, 申力旭. 学术论文创新性研究述评[J]. 图书情报知识, 2022, 39(4): 68-79. (WEI X Q, SHEN L X. A research review of the academic paper innovativeness[J]. Documentation, information & knowledge, 2022, 39(4): 68-79.)
[34] 汪雪锋, 于慧妍, 郑思佳, 等. 学术论文创新质量评价研究——以多能干细胞技术为例[J]. 数据分析与知识发现, 2024, 8(5): 127-138. (WANG X F, YU H Y, ZHENG S J, et al. Evaluating innovation quality of academic papers: case study of pluripotent stem cells[J]. Data analysis and knowledge discovery, 2024, 8(5): 127-138.)
[35] 全国文献工作标准化技术委员会第七分委员会. 科学技术报告、学位论文和学术论文的编写格式: GB/T 7713-1987[S]. 北京: 国家标准局, 1987: 16. (The Seventh Sub Committee of the National Standardization Technical Committee for Literature Work. Format for writing scientific and technological reports, dissertations, and academic papers: GB/T 7713-1987[S]. Beijing: National Bureau of Standards, 1987: 16.)
[36] ZHOU H, LIU H, ZHANG Y, et al. An outlier detection algorithm based on an integrated outlier factor[J]. Intelligent data analysis, 2019, 23(5): 975-990.
[37] BREUNIG M M, KRIEGEL H P, NG R T, et al. LOF: identifying density-based local outliers[C]//Proceedings of the 2000 ACM SIGMOD international conference on management of data. New York: Association for Computing Machinery, 2000: 93-104.
[38] 常霞, 魏绪秋, 张以迪, 等. 基于知识单元属性特征的学 术论 文创 新性 评价 研究 [J/OL]. 情报 理论 与实 践:1-13[2024-06-20]. http://kns.cnki.net/kcms/detail/11.1762. g3.20240605.0854.002.html. (CHANG X, WEI X Q, ZHANG Y D, et al. Research on innovative evaluation of academic papers based on knowledge unit attributes[J/OL]. Information studies: theory & application:1-13[2024-06-20]. http://kns.cnki.net/kcms/detail/11.1762.g3.20240605.0854.002.html.)
[39] HAND D J, HENLEY W E. Statistical classification methods in consumer credit scoring: a review[J]. Journal of the Royal Statistical Society: Series A (Statistics in society), 1997, 160(3): 523-541.
[40] 张彪, 吴红, 高道斌. 融合多维特征的高校专利价值分级方法及其实证研究[J]. 图书馆论坛, 2022, 42(11): 42-49. (ZHANG B, WU H, GAO D B. An empirical study on value-based grading method for university patents with multidimensional features[J]. Library tribune, 2022, 42(11): 42-49.)
[41] LUNDBERG S M, LEE S I. A unified approach to interpreting model predictions[J]. arXiv preprint, 2017, arXiv: 1705.07874.
[42] 曾建勋. 中国高被引分析报告2022[M]. 北京: 科学技术文献出版社, 2023. (ZENG J X. China high citation analysis report 2022[M]. Beijing: Science and Technology Literature Press, 2023.)
[43] BORNMANN L, LEYDESDORFF L. Skewness of citation impact data and covariates of citation distributions: a large-scale empirical analysis based on Web of science data[J]. Journal of informetrics, 2017, 11(1): 164-175.