研究论文

面向科技文献的多维度学科交叉特性研究——以数字人文领域为例

  • 李慧 ,
  • 刘祝一 ,
  • 王乾宇 ,
  • 王若婷
展开
  • 西安电子科技大学经济与管理学院 西安 710126
李慧,副教授,博士,硕士生导师,E-mail: lihui@xidian.edu.cn;刘祝一,硕士研究生;王乾宇,硕士研究生;王若婷,硕士研究生。

收稿日期: 2024-01-31

  修回日期: 2024-06-08

  网络出版日期: 2025-02-11

基金资助

本文系陕西省自然科学基础研究计划资助项目“融合多源异构数据的新兴技术发展潜力研究”(项目编号:2023-JC-YB-625)研究成果之一。

Research on Multi-dimensional Interdisciplinary Characteristics from the Perspective of Literature: A Case Study of Digital Humanities

  • Li Hui ,
  • Liu Zhuyi ,
  • Wang Qianyu ,
  • Wang Ruoting
Expand
  • School of Economic & Management, Xidian University, Xi'an 710126

Received date: 2024-01-31

  Revised date: 2024-06-08

  Online published: 2025-02-11

Supported by

This work is supported by the Natural Science Foundation of Shannxi Province project titled “Study on the Potential Development of Emerging Technologies Based on Integration of Multi-source Heterogeneous Data” (Grant Nos. 2023-JC-YB-625).

摘要

[目的/意义] 从多维度出发探究不同发展阶段下学科交叉融合的变化过程,有助于丰富学科交叉特性研究方法,挖掘出推动学科交叉融合的核心技术及潜在方法,为交叉学科相关政策制定提供参考。[方法/过程] 采用文献计量与自然语言处理结合的方式,利用多样性、持久性、稳定性和亲和度指标进行粗粒度学科交叉特性分析。同时,自动抽取文献中的技术/方法元素,并将结果映射到学科,识别学科相关研究方法与技术元素,进行细粒度学科交叉特性分析。最后融合粗粒度与细粒度分析,揭示领域内被交叉学科之间的潜在技术对。[结果/结论] 以数字人文领域为例进行实证分析,结果表明面向学科整体的粗粒度以及基于技术/方法元素的细粒度交叉分析方法,能够有效揭示领域内学科的交叉融合情况并识别出推动学科交叉融合的技术方法。通过融合粗细粒度的交叉学科分析结果,有助于发现对交叉学科起推动作用的“主题—技术对”,为研究人员的相关研究工作提供参考。

本文引用格式

李慧 , 刘祝一 , 王乾宇 , 王若婷 . 面向科技文献的多维度学科交叉特性研究——以数字人文领域为例[J]. 图书情报工作, 2025 , 69(3) : 64 -77 . DOI: 10.13266/j.issn.0252-3116.2025.03.006

Abstract

[Purpose/Significance] This study explores the change process of interdisciplinary integration from multiple dimensions under different development stages, which helps to enrich the research methods of interdisciplinary characteristics, dig out the core technologies and potential methods for promoting integration, and provide references for the formulation of interdisciplinary related policies. [Method/Process] This article adopted a combination of bibliometrics and natural language processing for analysis. First, it conducted a coarse-grained analysis of interdisciplinary characteristics using indicators of diversity, persistence, stability, and affinity. Then, it took a fine-grained analysis by automatically extracting technology/method elements and mapping them to their respective disciplines, identifying research methods and technical elements related to disciplines. Finally, it integrated both coarse-grained and fine-grained analyses to reveal potential technology pairs between disciplines in the field. [Result/Conclusion] Taking the digital humanities as an example for empirical analysis, this paper indicates that the coarse-grained disciplinary intersection analysis based on the entire discipline and the fine-grained one based on technical/methodological elements can effectively reveal the cross-disciplinary integration within the field and identify the technical methods that promote such integration. Through integrating the analysis results of cross-disciplinary intersection at both coarse and fine granularities, it is conducive to discovering the “topic-technology pairs” that drive cross-disciplinary research and providing references for researchers’ related studies.

参考文献

[1] 韩正琪, 刘小平, 徐涵. 基于Rao-Stirling指数的学科交叉文献发现——以纳米科学与纳米技术为例[J]. 图书情报工作, 2018, 62(1): 125-131. (HAN Z Q, LIU X P, XU H. Interdisciplinary literature discovery based on Rao-Stirling diversity indices: case studies in nanoscience and nanotechnology[J]. Library and information service, 2018, 62(1): 125-131.)
[2] 张雪, 刘昊, 张志强. 不同合作模式下的学科交叉程度与文献学术影响力关系研究[J]. 情报杂志, 2021, 40(8): 164-172. (ZHANG X, LIU H, ZHANG Z Q. Research on the relationship between interdisciplinarity and academic influence of literature under different collaboration modes[J]. Journal of intelligence, 2021, 40(8): 164-172.)
[3] LI B, CHEN S, LARIVIÈRE V. Interdisciplinarity affects the technological impact of scientific research[J]. Scientometrics, 2023, 128(12): 6527-6559.
[4] 张振青, 孙巍. 基于特征测度和PhraseLDA模型的领域学科交叉主题识别研究——以纳米技术的农业环境应用领域为例[J]. 数据分析与知识发现, 2023, 7(7): 32-45. (ZHANG Z Q, SUN W. Interdisciplinary subject recognition based on feature measurement and PhraseLDA model: case study of nanotechnology in agricultural environment[J]. Data analysis and knowledge discovery, 2023, 7(7): 32-45.)
[5] ZIELINSKI A. Impact of model settings on the text-based Rao diversity index[J]. Scientometrics, 2022, 127(12): 7751-7768.
[6] 章成志, 徐庶睿, 卢超. 利用引文内容监测多学科交叉现象的方法与实证[J]. 图书情报工作, 2016, 60(19): 108-115. (ZHANG C Z, XU S R, LU C. Using citation content for interdisciplinary phenomenon[J]. Library and information service, 2016, 60(19): 108-115.)
[7] 徐庶睿, 章成志, 卢超. 利用引文内容进行主题级学科交叉 类型 分析 [J]. 图书 情报 工作, 2017, 61(23): 15-24. (XU S R, ZHANG C Z, LU C. Using citation contents for the interdisciplinary type analysis at a topical level[J]. Library and information service, 2017, 61(23): 15-24.)
[8] PORTER A L, COHEN A S, ROESSNER D J, et al. Measuring researcher interdisciplinarity[J]. Scientometrics, 2007, 72(1): 117-147.
[9] PORTER A L, CHUBIN D E. An indicator of cross-disciplinary research[J]. Scientometrics, 2007, 1985, 8(3): 161-176.
[10] L E Y D E S D O R F F L, R A F O L S I. Indicators of the interdisciplinarity of journals: diversity, centrality, and citations[J]. Journal of informetrics, 2011, 5(1): 87-100.
[11] SHANNON C E. A mathematical theory ofcommunication[J]. The bell system technical journal, 1948, 27(3): 379-423.
[12] SIMPSON E H. Measurement of diversity[J]. Nature, 1949, 163(4148): 688-688.
[13] STIRLING A. A general framework for analyzing diversity in science, technology and society[J]. Journal of the royal society interface, 2007, 4(15): 707-719.
[14] LEYDESDORFF L, WAGNER C S, BORNMANN L. Interdisciplinarity as diversity in citation patterns among journals: Rao-Stirling diversity, relative variety, and the Gini coefficient[J]. Journal of informetrics, 2019, 13(1): 255-269.
[15] ZHANG L, ROUSSEAU R, GLÄNZEL W. Diversity of references as an indicator of the interdisciplinarity of journals: taking similarity between subject fields into account[J]. Journal of the Association for Information Science and Technology 2016, 67(5): 1257-1265.
[16] DENG S, XIA S. Mapping the interdisciplinarity in information behavior research: a quantitative study using diversity measure and co-occurrence analysis[J]. Scientometrics, 2020, 124(4): 489-513.
[17] RAFOLS I, MEYER M. Diversity and network coherence as indicators of interdisciplinarity: case studies in bionanoscience[J]. Scientometrics, 2010, 82(2): 263-287.
[18] 李长玲, 纪雪梅, 支岭. 基于E-I指数的学科交叉程度分析——以情报学等5 个学科为例[J]. 图书情报工作, 2011, 55(16): 33-36. (LI C L, JI X M, ZHI L. The interdisciplinary degree based on E-I index: taking five disciplines including information science as examples[J]. Library and information service, 2011, 55(16): 33-36.)
[19] Incites Journal Citation Reports[EB/OL]. [2024-09-10]. https://jcr.clarivate.com/jcr/home.
[20] CORRÊA JR E A, SILVA F N, COSTA L F, et al. Patterns of authors contribution in scientific manuscripts[J]. Journal of informetrics, 2017, 11(2): 498-510.
[21] BU Y, DING Y, LIANG X, et al. Understanding persistent scientific collaboration[J]. Journal of the Association for Information Science and Technology, 2018, 69(3): 438-448.
[22] BU Y, MURRAY D S, DING Y, et al. Measuring the stability of scientific collaboration[J]. Scientometrics, 2018, 114(2): 463-479.
[23] TAKAHASHI R, KAIBE K, SUZUKI K, et al. New concept of the affinity between research fields using academic journal data in Scopus[J]. Scientometrics, 2023, 128(6): 3507-3534.
[24] GROOTENDORST M. BERTopic: neural topic modeling with a class-based TF-IDF procedure[J]. arXiv preprint arXiv: 220305794, 2022.
[25] MATTHEW K G. Day of DH: defining the digital humanities[M]. Minneapolis: University of Minnesota Press, 2012.
[26] TEBEAU M. Engaging the materiality of the archive in the digital age[J]. Collections, 2016, 12(4): 475-487.
[27] 王曰芬, 李冬琼, 余厚强. 生命周期阶段中的科学合作网络演化及高影响力学者成长特征研究[J]. 情报学报, 2018,37(2): 121-131. (WANG Y F, LI D Q, YU H Q. Research on the evolution of the scientific collaboration network and the growth of the high-impact author in the life cycle phase[J]. Journal of the China Society for Scientific and Technical Information, 2018, 37(2): 121-131.)
[28] Alliance of digital humanities organizations[EB/OL]. [2024-09-10]. https://dh2020.adho.org/abstracts/.
[29] Stanford HAI. Artificial intelligence index report 2023[R]. [2024-09-10]. Stanford Institute for Human-Centered Artificial Intelligence. 2023.
[30] 吴梦成, 林立涛, 齐月, 等. 数字人文视域下先秦典籍植物知识挖掘与组织研究[J]. 图书情报工作, 2023, 67(12): 103-113. (WU M C, LIN L T, QI Y, et al. Plant knowledge mining and organization construction in pre-Qin classics from the perspective of digital humanities[J]. Library and information service, 2023, 67(12): 103-113.)
[31] 孙燕, 刘浏, 王东波. 《春秋左传正义》引书计算人文研究 [J]. 图书情报工作, 2023, 67(2): 119-130. (SUN Y, LIU L, WANG D B. Acomputing humanities study on the citation books from Chun Qiu Zuo Zhuan Zheng Yi[J]. Library and information service, 2023, 67(2): 119-130.)
[32] LI J, XU T, GU X, et al. Scene clusters, causes, spatial patterns and strategies in the cultural landscape heritage of Tang Poetry Road in Eastern Zhejiang based on text mining[J]. Heritage science, 2023, 11(1): 212.
[33] 韩旭, 晏选军. 元末文人交往的特征与图景——基于“玉山雅集”的社会网络分析[J]. 图书馆杂志, 2022, 41(8): 84-92, 127. (HAN X, YAN X J. The landscape of literati interaction in the late Yuan Dynasty: analysis of social network based on Yushan Yaji[J]. Library journal, 2022, 41(8): 84-92, 127.)
[34] CHAMMAS M, MAKHOUL A, DEMERJIAN J, et al. A deep learning-based system for writer identification in handwritten Arabic historical manuscripts[J]. Multimedia tools and applications, 2022, 81(21): 30769-30784.
[35] 张力元, 王军. 基于机器学习的古籍目录互著与别裁探析[J]. 中国图书馆学报, 2022, 48(2): 47-61. (ZHANG L Y, WANG J. Research on inter record and analytic record of classical bibliography based on machine learning[J]. Journal of library science in China, 2022, 48(2): 47-61.)
文章导航

/