研究论文

基于大语言模型的短视频平台生态中的用户破圈分析——以快手为例

  • 潘禹辰 ,
  • 杨紫婷 ,
  • 汤昊天 ,
  • 麦柏荣 ,
  • 鲁提普拉·卢合曼 ,
  • 徐璐
展开
  • 中国人民大学信息资源管理学院, 北京 100872
潘禹辰,副教授,博士;杨紫婷,本科生;汤昊天,本科生;麦柏荣,本科生;鲁提普拉·卢合曼,本科生;徐璐,副教授,博士,通信作者,E-mail:rzxulu@ruc.edu.cn。

收稿日期: 2024-04-24

  修回日期: 2024-09-05

  网络出版日期: 2025-02-26

基金资助

本文系国家自然科学基金面上项目“信息‘精炼’下基于时空网络演化分析的多元O2O服务推荐方法研究”(项目编号:72471231)和中国人民大学科学研究基金项目(中央高校基本科研业务费专项资金资助)“个性化推荐的‘卡脖子’难题研究—在O2O商业领域的应用”(项目编号:24XNR07)研究成果之一。

Analysis of User Circle-Breaking Behavior in the Short Video Platform Ecology Based on Large Language Models: A Case Study of Kuaishou

  • Pan Yuchen ,
  • Yang Ziting ,
  • Tang Haotian ,
  • Mai Bairong ,
  • Lutipula Luheman ,
  • Xu Lu
Expand
  • School of Information Resource Management, Renmin University of China, Beijing 100872

Received date: 2024-04-24

  Revised date: 2024-09-05

  Online published: 2025-02-26

Supported by

This work is supported by the National Natural Science Foundation of China project, titled “O2O Service Recommendation Method Based on Fake Review Detection and Spatiotemporal Network Evolution Analysis” (Grant No. 72471231), and the Fundamental Research Funds for the Central Universities, titled “Research on the Serious Problems of Personalized Recommendation: Applications in the O2O Business” (Grant No. 24XNR07).

摘要

[目的/意义] 随着短视频行业的迅猛发展和用户规模的不断扩张,短视频平台广泛采用的个性化推荐算法在提升用户体验的同时,也带来用户信息同质化的问题,进而限制用户信息获取的广度和深度。深入探究用户在短视频平台上的破圈行为,即用户如何突破其固有的视频类型偏好圈,以期为用户提供更加多元化、全面化的信息获取体验,并进而促进短视频平台的健康发展。[方法/过程] 结合理论建构与实证研究的方法,选取快手短视频平台作为研究案例。提出用户行为分析AIS模型,并基于此模型对用户群体进行细分,进而分析不同用户群体的破圈行为和破圈意愿。同时,利用大语言模型技术,设计一个辅助用户破圈的推荐系统架构,以期通过技术手段促进用户的信息多元化探索。[结果/结论] 快手短视频平台的用户可被细分为4类,这些用户群体在视频消费和社交互动方面展现出差异化的特征。总体而言,用户离开原有视频观看偏好圈、主动选择观看新视频的意愿普遍较低。然而,值得注意的是,那些在社交网络上表现活跃,但对具体内容的消费和互动并不频繁的用户,反而更容易发生破圈行为。因此,借助平台和算法的力量来辅助用户破圈,是提升用户体验和促进平台健康发展的重要途径。

本文引用格式

潘禹辰 , 杨紫婷 , 汤昊天 , 麦柏荣 , 鲁提普拉·卢合曼 , 徐璐 . 基于大语言模型的短视频平台生态中的用户破圈分析——以快手为例[J]. 图书情报工作, 2025 , 69(4) : 34 -52 . DOI: 10.13266/j.issn.0252-3116.2025.04.004

Abstract

[Purpose/Significance] With the rapid growth of short videos and the increasing number of users, the personalized recommendation algorithms widely adopted by short video platforms improves the user experience, but also brings the problem of users’ information homogenization, which in turn restricts the breadth and depth of users’ information acquisition. The purpose of this study is to explore users’ circle-breaking behavior on short video platforms, specifically how users break through their existing video preferences, in order to provide users with a more diversified and comprehensive information acquisition experience, and promote the healthy development of short video platforms. [Method/Process] This study combined the method of theoretical construction and empirical research, taking Kuaishou short video platform as a case study. The AIS model of user behavior analysis was proposed, which was used to segment users and analyze their circle-breaking behaviors and willingness. At the same time, based on the large language model technology, a recommendation system architecture was designed to assist users to break the circle, aiming to promote users’ information diverse exploration by technical means. [Result/Conclusion] Kuaishou users can be subdivided into four categories. Each of them shows different characteristics in their video consumption and social interaction. Overall, users show a low willingness to leave their original preferred videos and actively choose new ones. However, it is worth noting that users who are active on social networks but do not frequently consume or interact with specific content are more likely to exhibit circle-breaking behavior. Therefore, leveraging platforms and algorithms to assist users in breaking the circle is an important way to enhance user experience and promote the healthy development of platforms.

参考文献

[1] 王天夫. 数字时代的社会变迁与社会研究[J]. 中国社会科学, 2021(12): 73-88, 200-201. (WANG T F. Social change and social research in the digital age[J]. Social sciences in China, 2021(12): 73-88, 200-201.)
[2] CNNIC. 第52次中国互联网络发展状况统计报告[R]. 北京: 中国互联网络信息中心, 2023. (CNNIC. The 52nd statistical report on China’s Internet development[R]. Beijing: Chinese Internet network information center, 2023.)
[3] ZHANG X, WU Y, LIU S. Exploring short-form video application addiction: socio-technical and attachment perspectives[J]. Telematics and informatics, 2019, 42(9): 101243.1-101243.15.
[4] COOPER A, ROBERT R R, CRONIN D. About Face 3: the essentials of interaction design[M]. New Jersey: Wiley, 2007.
[5] 胡宇辰, 郭宇. 基于沙漏模型的移动互联网用户行为分析[J]. 管理世界, 2013(7): 184-185. (HU Y C, GUO Y. Analysis of mobile Internet user behavior based on hourglass model[J]. Journal of management world, 2013(7): 184-185.)
[6] 单晓红, 张晓月, 刘晓燕. 基于在线评论的用户画像研究——以携程酒店为例[J]. 情报理论与实践, 2018, 41(4): 99-104, 149. (SHAN X H, ZHANG X Y, LIU X Y. Research on user portrait based on online reviews: taking Ctrip Hotel as an example[J]. Information studies: theory & application, 2018, 41(4): 99-104, 149.)
[7] 安璐, 胡俊阳, 李纲. 突发事件情境下社交媒体高影响力用户画像研究[J]. 情报资料工作, 2020, 41(6): 6-16. (AN L, HU J Y, LI G. Research on portraits of high-impact users on social media in the context of emergencies[J]. Information and documentation services, 2020, 41(6): 6-16.)
[8] PENG J, CHOO K K R, ASHMAN H. User profiling in intrusion detection: a review[J]. Journal of network and computer applications, 2016, 72(1): 14-27.
[9] 刘海鸥, 孙晶晶, 苏妍嫄, 等. 国内外用户画像研究综述[J]. 情报理论与实践, 2018, 41(11): 155-160. (LIU H O, SUN J J, SU Y Y, et al. Literature review of persona at home and abroad[J]. Information studies: theory&practice, 2018, 41(11): 155-160.)
[10] ADOMAVICIUS G, TUZHILIN A. Using data mining methods to build customer profiles[J]. Computer, 2001, 34(2): 74-82.
[11] PAZZANI M J, BILLSUS D. Content-based recommendation system[M]. Heidelberg: Springer, 2007: 325-341.
[12] 吴文瀚. 搜索引擎全量数据的用户画像模型研究——设计与实证[J]. 图书情报工作, 2022, 66(4): 129-141. (WU W H. Research on user portrait model of the full data for search engine: design and empirical study[J]. Library and information service, 2022, 66(4): 129-141.)
[13] 王志刚, 邱长波. 基于主题的政务微博评论用户画像研究[J]. 情报杂志, 2022, 41(3): 159-165. (WANG Z G, QIU C B. Research on user portrait of government micblog comments based on themes[J]. Journal of intelligence, 2022, 41(3): 159-165.)
[14] MCPHERSON M, SMITH-LOVIN L, COOK J M. Birds of a feather: homophily in social networks[J]. Annual review of sociology, 2001, 27(1): 415-444.
[15] ARMSTRONG A, HAGEL J. The real value of on-line communities[J]. Harvard business review, 1996, 74(3): 134-141.
[16] 杨梦晴, 王晰巍, 李凤春, 等. 基于扎根理论的移动图书馆社群化服务用户参与影响因素研究[J]. 图书情报工作, 2018, 62(6): 85-92. (YANG M Q, WANG X W, LI F C, et al. Factors of user engagement in mobile library community service: an analysis based on grounded theory[J]. Library and information service, 2018, 62(6): 85-92.)
[17] 赵月华, 盛予欣. 短视频平台用户交互行为的差异性[J]. 图书馆论坛, 2024, 44(2): 114-122. (ZHAO Y H, SHENG Y X. Differences in user interaction behavior on short video platforms[J]. Library tribune, 2024, 44(2): 114-122.)
[18] 王琼宇, 胡蓉, 邓小昭. 新老年用户短视频生成行为动因研究——麦克拉斯基需求分类理论视角[J]. 情报资料工作, 2024, 45(3): 49-59. (WANG Q Y, HU R, ZHENG X Z. Studies on the short video generation behavior of new senior users: from the perspective of McClusky demand classification theory[J]. Information and documentation services, 2024, 45(3): 49-59.)
[19] 张潇月.“副号即隐私”:Z世代用户社交媒体信息发布行为特点研究[J]. 情报资料工作, 2024, 45(3): 60-69. (ZHANG X Y. Alternate account is privacy: research on the features of generation Z users social media information posting behaviors[J]. Information and documentation services, 2024, 45(3): 60-69.)
[20] 王烽权, 江积海. 互联网短视频商业模式如何实现价值创造?——抖音和快手的双案例研究[J]. 外国经济与管理, 2021, 43(2): 3-19. (WANG F Q, JIANG J H. How does the Internet short video business model realize value creation? a comparative case study of Douyin and Kuaishou[J]. Foreign economics & management, 2021, 43(2): 3-19.)
[21] 石宇, 胡昌平, 时颖惠. 个性化推荐中基于认知的用户兴趣建模研究[J]. 情报科学, 2019, 37(6): 37-41. (SHI Y, HU C P, SHI Y H. User profiles modeling based on cognition in personalized recommendation[J]. Information science, 2019, 37(6): 37-41.)
[22] 蒋武轩, 易明, 熊回香, 等. 网络社交平台中社群标签生成研究[J]. 图书情报工作, 2021, 65(10): 79-89. (JIANG W X, YI M, XIONG H X, et al. Research on the generation of community tags in network social platforms[J]. Library and information service, 2021, 65(10): 79-89.)
[23] 金立印, 邹德强, 裘理瑾. 服务定制情境下选项的战略呈现:呈现框架对消费者选择的影响[J]. 南开管理评论, 2009, 12(6): 90-100. (JIN L Y, ZOU D Q, QIU L J. The effect of option framing on consumer choice in service customization context[J]. Nankai business review, 2009, 12(6): 90-100.)
[24] 陈梅梅, 刘利梅, 施驰玮, 等.推荐规模对个性化推荐系统用户决策的影响研究[J]. 南开管理评论, 2020, 23(1): 180-188. (CHEN M M, LIU L M, SHI C W, et al. The effect of recommendation scale on the personalized recommendation system in influencing users decision-making[J]. Nankai business review, 2019, 23(1): 180-188.)
[25] 谭春辉, 涂瑞德. 融合群体兴趣和核心用户影响的群组推荐方法研究[J]. 情报理论与实践, 2024, 47(6): 147-153. (TAN C H, TU R D. Group recommendation method combining group interest and core user influence[J]. Information studies: theory&application, 2024, 47(6): 147-153.)
[26] CASS R S. Infotopia: how many minds produce knowledge[M]. New York: Oxford University Press, 2006.
[27] 喻国明, 曲慧. “信息茧房”的误读与算法推送的必要——兼论内容分发中社会伦理困境的解决之道[J]. 新疆师范大学学报(哲学社会科学版), 2020, 41(1): 127-133. (YU G M, QU H. The misreading of "information cocoon" and the necessity of algorithmic push: on the solution to the social ethical dilemma in content distribution[J]. Journal of Xinjiang Normal University (philosophy and social sciences), 2019, 41(1): 127-133.)
[28] 张生太, 杨阳, 袁艺玮, 等. 短视频个性化推荐对用户信息采纳意愿的影响[J]. 科研管理, 2024, 45(4): 175-184. (ZHANG S T, YANG Y, YUAN Y W, et al. Influence of personalized recommendation of short-videos on users' information adoption intention[J]. Science research management, 2024, 45(4): 175-184.)
[29] ELI P. The Filter bubble: what the Internet is hiding from you[M]. New York: Penguin Press, 2011.
[30] HUANG Y, ZHOU L, ZENG Z, et al. An empirical study on the phenomenon of information narrowing in the context of personalized recommendation[C]//2nd international conference on artificial intelligence and computer science. Hangzhou: Journal of Physics: Conference Series, 2020, 1631(1): 012109.
[31] 胡泳. 新词探讨: 回声室效应[J]. 新闻与传播研究, 2015, 22(6): 109-115. (HU Y. Discussion of new words: echo chamber effect[J]. Journalism & communication, 2015, 22(6): 109-115.)
[32] VAN A M, BRYNJOLFSSON E. Could the Internet balkanize science?[J]. Science, 1996, 274(5292): 1479-1480.
[33] ANTHONY C. Chilling effects: the communications decency act and the online market-place of ideas[J]. University of Miami review, 2008, 63(1): 1-128.
[34] SEARGEANT P, TAGG C. Social media and the future of open debate: a user-oriented approach to Facebook’s filter bubble conundrum[J]. Discourse, context & media, 2018, 27(3): 41-48.
[35] 彭兰. 导致信息茧房的多重因素及“破茧”路径[J]. 新闻界, 2020(1): 30-38, 73. (PENG L. Multiple factors resulting in information cocoon and the approach of breakthrough[J]. Journalism and mass communication, 2020(1): 30-38, 73.)
[36] 叶莎莎, 杜婉鹏, 杜杏叶. 信息茧房视域下移动知识服务使用影响因素研究[J]. 图书情报工作, 2022, 66(16): 117-124. (YE S S, DU W P, DU X Y. Research on influencing factors of mobile knowledge service usage from the perspective of information cocoons [J]. Library and information services, 2022, 66(16): 117-124.)
[37] 郭迅华, 吴鼎, 卫强, 等. 机器学习与用户行为中的偏差问题:知偏识正的洞察[J]. 管理世界, 2023, 39(5): 145-159, 199, 160-162. (GUO X H, WU D, WEI Q, et al. The problem of biases in machine learning and user behavior: insights into knowing the deviated and upholding the undeviated[J]. Journal of management world, 2023, 39(5): 145-159, 199, 160-162.)
[38] 温凤鸣, 解学芳. 短视频推荐算法的运行逻辑与伦理隐忧——基于行动者网络理论视角[J]. 西南民族大学学报(人文社会科学版), 2022, 43(2): 160-169. (WEN F M, XIE X F. Hybrid recommendation algorithm for removing popularity bias based on feature embedding[J]. Journal of Southwest Minzu University (humanities and social sciences edition), 2022, 43(2): 160-169.)
[39] 中央网络安全和信息化委员会办公室, 中华人民共和国国家互联网信息办公室. 关于开展“清朗·整治短视频信息内容导向不良问题”专项行动的通知[EB/OL]. [2024-10-29]. https://www.cac.gov.cn/2023-12/12/c_1704042778297969.htm. (Office of the Central Cyberspace Affairs Commission, Cyberspace Administration of the People's Republic of China. Implementation of "clear, short video information content leads to bad problem" special action to inform[EB/OL]. [2024-10-29]. https://www.cac.gov.cn/2023-12/12/c_1704042778297969.htm.)
[40] 肖红军.算法责任:理论证成、全景画像与治理范式[J]. 管理世界, 2022, 38(4): 200-226. (XIAO H J. Algorithmic responsibility: theoretical justification, panoramic portrait and governance paradigm[J]. Journal of management world, 2022, 38(4): 200-226.)
[41] WILLEMSEN M C, GRAUS M P, KNIJENBURG B P. Understanding the role of latent feature diversification on choice difficulty and satisfaction[J]. User modeling and user-adapted interaction, 2016, 26(4): 347-389.
[42] YIN H, ZHOU X, CUI B, et al. Adapting to user interest drift for poi recommendation[J]. IEEE transactions on knowledge and data engineering, 2016, 28(10): 2566–2581.
[43] PIAO G, BRESLIN J G. Exploring dynamics and semantics of user interests for user modeling on Twitter for link recommendations[C]//International conference on semantic system. New York: ACM, 2016: 81-88.
[44] 张诚, 王富荣, 郁培文, 等. 基于深度增强学习的个性化动态促销[J]. 管理世界, 2023, 39(5): 160-178. (ZHANG C, WANG F R, YU P W, et al. Personalized dynamic promotion based on deep reinforcement learning[J]. Journal of management world, 2023, 39(5): 160-178.)
[45] 李媛媛, 李旭晖. 结合本体与社会化标签的用户动态兴趣建模研究[J]. 情报学报, 2020, 39(4): 436-449. (LI Y Y, LI X H. Modeling research of user dynamic interest based on ontology and folksonomy[J]. Journal of the China society for scientific and technology information, 2019, 39(4): 436-449.)
[46] 仲兆满, 管燕, 胡云, 等. 基于背景和内容的微博用户兴趣挖掘[J]. 软件学报, 2017, 28(2): 278-291. (ZHONG Z M, GUAN Y, HU Y, et al. Mining user interests on Microblog based on profile and content[J]. Journal of software, 2017, 28(2): 278-291.)
[47] 吴迪, 杨利君, 马文莉. 时间感知的用户长短期兴趣特征分离推荐算法[J]. 计算机工程与设计, 2024, 45(5): 1443-1450. (WU D, YANG L J, MA W L. Time-aware recommendation algorithm for user long- and short-term interest features separation[J]. Computer engineering and design, 2024, 45(5): 1443-1450.)
[48] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in neural information processing systems 30: annual conference on neural information processing systems 2017. New York: Curran Associates, 2017: 5998-6008.
[49] OpenAI. GPT-4 technical report[EB/OL]. [2024-10-29]. https://arxiv.org/abs/2303.08774.
[50] TOUVRON H, MARTIN L, STONE K, et al. Llama 2: open foundation and fine-tuned chat models[EB/OL]. [2014-10-29]. https://arxiv.org/abs/2307.09288.
[51] SUN Y, WANG S, FENG S, et al. ERNIE 3.0: Large-scale knowledge enhanced pre-training for language understanding and generation[EB/OL]. [2024-10-29]. https://arxiv.org/abs/2107.02137.
[52] REN X Z, ZHOU P Y, MENG X F, et al. PanGu-Σ: Towards trillion parameter language model with sparse heterogeneous computing[EB/OL]. [2024-10-29]. https://arxiv.org/abs/2303.10845.
[53] DAVENPORT T H, RONANKI R. Artificial intelligence for the real world[J]. Harvard business review, 2018, 96(1): 108-116.
[54] BROWN T, MANN B, RYDER N, et al. Language models are few-shot learners[C]//Advances in neural information processing system. New York: Curran Associates, 2020: 1877-1901.
[55] OUYANG L, WU J, JIANG X, et al. Training language models to follow instructions with human feedback[C]//Advances in neural information processing systems. New York: Curran Associates, 2022: 27730-27744.
[56] WEI J, WANG X Z, SCHUURMANS D, et al. Chain of thought prompting elicits reasoning in large language models[C]//Advances in neural information processing systems. New York: Curran Associates, 2022: 24824-24837.
[57] 吕巍, 杨颖, 张雁冰. AI个性化推荐下消费者感知个性化对其点击意愿的影响[J]. 管理科学, 2020, 33(5): 44-57. (LV W, YANG Y, ZHANG Y B. Effect of consumers' perceived personalization on their click-through intention under AI personalized recommendations[J]. Journal of management science, 2019, 33(5): 44-57.)
[58] 毕达天, 王璐, 王雨菲, 等. AIGC产品用户需求特征体系构建及改进策略研究[J]. 图书情报工作, 2024, 68(14): 14-24. (BI D T, WANG L, WANG Y F, et al. Research on the construction of user demand characteristic system and improvement strategy of AIGC products[J]. Library and information service, 2024, 68(14): 14-24.)
[59] 张鹤译, 王鑫, 韩立帆, 等. 大语言模型融合知识图谱的问答系统研究[J]. 计算机科学与探索, 2023, 17(10): 2377-2388. (ZHANG H L, WANG X, HAN L F, et al. Research on question answering system on joint of knowledge graph and large language models[J]. Journal of frontiers of computer science and technology, 2023, 17(10): 2377-2388.)
[60] 高云帆, 郁董卿, 王思琪, 等. 大语言模型驱动的选址推荐系统[J]. 计算机研究与发展, 2024, 61(7): 1681-1696. (GAO Y F, YU D Q, WANG S Q, et al. Large language model powered site selection recommender system[J]. Journal of computer research and development, 2024, 61(7): 1681-1696.)
[61] 杨波, 孙晓虎, 党佳怡, 等. 面向医疗问答系统的大语言模型命名实体识别方法[J]. 计算机科学与探索, 2023, 17(10): 2389-2402. (YANG B, SUN X H, DANG J Y, et al. Named entity recognition method of large language model for medical question answering system[J]. Journal of frontiers of computer science and technology, 2023, 17(10): 2389-2402.)
[62] 朱铮雄, 周智宏. 研究使用GPT构建大语言模型智能母基金决策投资支持系统[J]. 计算机应用与软件, 2024, 41(5): 21-26. (ZHU Z X, ZHOU Z H. Building a large language modeling intelligent fund of funds decision making and investment support system using GPT[J]. Computer applications and software, 2024, 41(5): 21-26.)
[63] 陈治平, 胡宇舟, 顾学道. 聚类算法在电信客户细分中的应用研究[J]. 计算机应用, 2007(10): 2566-2569, 2577. (CHEN Z P, HU Y Z, GU X D. Applied research of clustering algorithm in telecom customer segments[J]. Journal of computer applications, 2007(10): 2566-2569, 2577.)
[64] 徐翔斌, 王佳强, 涂欢, 等.基于改进RFM模型的电子商务客户细分[J]. 计算机应用, 2012, 32(5): 1439-1442. (XV X B, WANG J Q, TU HUAN, et al. Customer classification of E-commerce based on improved RFM model[J]. Journal of computer applications, 2012, 32(5): 1439-1442.)
[65] COHEN M D. Exploiting response models: optimizing cross-sell and up-sell opportunities in banking[J]. Information systems, 2004, 29(4), 327-341.
[66] 田莹颖. 基于社会化标签系统的个性化信息推荐探讨[J]. 图书情报工作, 2010, 54(1): 50-53, 120. (TIAN Y Y. On personalized information recommendation based on social tagging system[J]. Library and information service, 2010, 54(1): 50-53, 120.)
[67] RESNICK P, VARIAN H R. Recommender systems[J]. Communications of the ACM, 1997, 40(3): 56-58.
[68] 孟祥武, 刘树栋, 张玉洁, 等. 社会化推荐系统研究[J]. 软件学报, 2015, 26(6): 1356-1372. (MENG X W, LIU S D, ZHANG Y J, et al. Research on social recommendation system[J]. Journal of software, 2015, 26(6): 1356-1372.)
[69] 赵青, 张利, 薛君. 网络用户粘性行为形成机理及实证分析[J]. 情报理论与实践, 2012, 35(10): 25-29. (ZHAO Q, ZHANG L, XUE J. The formation mechanism of Internet user stickiness behavior & its empirical analysis[J]. Information studies: theory&application, 2012, 35(10): 25-29.)
[70] 周军杰. 社会化商务背景下的用户粘性:用户互动的间接影响及调节作用[J]. 管理评论, 2015, 27(7): 127-136. (ZHOU J J. User stickiness in social commerce era: the indirect effect and moderating role of member interaction[J]. Management review, 2015, 27(7): 127-136.)
[71] 刘志明, 刘鲁. 微博网络舆情中的意见领袖识别及分析[J]. 系统工程, 2011, 29(6): 8-16. (LIU Z M, LIU L. Recognition and analysis of option leaders in microblog public options[J]. Systems engineering, 2011, 29(6): 8-16.)
[72] GAO C M, LI S J, ZHANG Y, et al. KuaiRand: an unbiased sequential recommendation dataset with randomly exposed videos[EB/OL]. [2024-10-29]. https://arxiv.org/abs/2208.08696.
[73] JOHN C, FRED E H. Tested advertising methods[M]. New Jersey: Prentice Hall, 1997.
[74] 陈国青, 任明, 卫强, 等. 数智赋能: 信息系统研究的新跃迁[J]. 管理世界, 2022, 38(1): 180-196. (CHEN G Q, REN M, WEI Q, et al. Data-intelligence empowerment: a new leap of information system research[J]. Journal of management world, 2022, 38(1): 180-196.)
[75] 丁晓东. 论算法的法律规制[J]. 中国社会科学, 2020(12): 138-159, 203. (DING X D. On the legal regulation of algorithms[J]. Social sciences in China, 2020(12): 138-159, 203.)
[76] 廖备水. 论新一代人工智能与逻辑学的交叉研究[J]. 中国社会科学, 2022(3): 37-54, 204-205. (LIAO B S. On the crossover study of the new generation of artificial intelligence and logic[J]. Social sciences in China, 2022(3): 37-54, 204-205.)
文章导航

/