[1] 王天夫. 数字时代的社会变迁与社会研究[J]. 中国社会科学, 2021(12): 73-88, 200-201. (WANG T F. Social change and social research in the digital age[J]. Social sciences in China, 2021(12): 73-88, 200-201.)
[2] CNNIC. 第52次中国互联网络发展状况统计报告[R]. 北京: 中国互联网络信息中心, 2023. (CNNIC. The 52nd statistical report on China’s Internet development[R]. Beijing: Chinese Internet network information center, 2023.)
[3] ZHANG X, WU Y, LIU S. Exploring short-form video application addiction: socio-technical and attachment perspectives[J]. Telematics and informatics, 2019, 42(9): 101243.1-101243.15.
[4] COOPER A, ROBERT R R, CRONIN D. About Face 3: the essentials of interaction design[M]. New Jersey: Wiley, 2007.
[5] 胡宇辰, 郭宇. 基于沙漏模型的移动互联网用户行为分析[J]. 管理世界, 2013(7): 184-185. (HU Y C, GUO Y. Analysis of mobile Internet user behavior based on hourglass model[J]. Journal of management world, 2013(7): 184-185.)
[6] 单晓红, 张晓月, 刘晓燕. 基于在线评论的用户画像研究——以携程酒店为例[J]. 情报理论与实践, 2018, 41(4): 99-104, 149. (SHAN X H, ZHANG X Y, LIU X Y. Research on user portrait based on online reviews: taking Ctrip Hotel as an example[J]. Information studies: theory & application, 2018, 41(4): 99-104, 149.)
[7] 安璐, 胡俊阳, 李纲. 突发事件情境下社交媒体高影响力用户画像研究[J]. 情报资料工作, 2020, 41(6): 6-16. (AN L, HU J Y, LI G. Research on portraits of high-impact users on social media in the context of emergencies[J]. Information and documentation services, 2020, 41(6): 6-16.)
[8] PENG J, CHOO K K R, ASHMAN H. User profiling in intrusion detection: a review[J]. Journal of network and computer applications, 2016, 72(1): 14-27.
[9] 刘海鸥, 孙晶晶, 苏妍嫄, 等. 国内外用户画像研究综述[J]. 情报理论与实践, 2018, 41(11): 155-160. (LIU H O, SUN J J, SU Y Y, et al. Literature review of persona at home and abroad[J]. Information studies: theory&practice, 2018, 41(11): 155-160.)
[10] ADOMAVICIUS G, TUZHILIN A. Using data mining methods to build customer profiles[J]. Computer, 2001, 34(2): 74-82.
[11] PAZZANI M J, BILLSUS D. Content-based recommendation system[M]. Heidelberg: Springer, 2007: 325-341.
[12] 吴文瀚. 搜索引擎全量数据的用户画像模型研究——设计与实证[J]. 图书情报工作, 2022, 66(4): 129-141. (WU W H. Research on user portrait model of the full data for search engine: design and empirical study[J]. Library and information service, 2022, 66(4): 129-141.)
[13] 王志刚, 邱长波. 基于主题的政务微博评论用户画像研究[J]. 情报杂志, 2022, 41(3): 159-165. (WANG Z G, QIU C B. Research on user portrait of government micblog comments based on themes[J]. Journal of intelligence, 2022, 41(3): 159-165.)
[14] MCPHERSON M, SMITH-LOVIN L, COOK J M. Birds of a feather: homophily in social networks[J]. Annual review of sociology, 2001, 27(1): 415-444.
[15] ARMSTRONG A, HAGEL J. The real value of on-line communities[J]. Harvard business review, 1996, 74(3): 134-141.
[16] 杨梦晴, 王晰巍, 李凤春, 等. 基于扎根理论的移动图书馆社群化服务用户参与影响因素研究[J]. 图书情报工作, 2018, 62(6): 85-92. (YANG M Q, WANG X W, LI F C, et al. Factors of user engagement in mobile library community service: an analysis based on grounded theory[J]. Library and information service, 2018, 62(6): 85-92.)
[17] 赵月华, 盛予欣. 短视频平台用户交互行为的差异性[J]. 图书馆论坛, 2024, 44(2): 114-122. (ZHAO Y H, SHENG Y X. Differences in user interaction behavior on short video platforms[J]. Library tribune, 2024, 44(2): 114-122.)
[18] 王琼宇, 胡蓉, 邓小昭. 新老年用户短视频生成行为动因研究——麦克拉斯基需求分类理论视角[J]. 情报资料工作, 2024, 45(3): 49-59. (WANG Q Y, HU R, ZHENG X Z. Studies on the short video generation behavior of new senior users: from the perspective of McClusky demand classification theory[J]. Information and documentation services, 2024, 45(3): 49-59.)
[19] 张潇月.“副号即隐私”:Z世代用户社交媒体信息发布行为特点研究[J]. 情报资料工作, 2024, 45(3): 60-69. (ZHANG X Y. Alternate account is privacy: research on the features of generation Z users social media information posting behaviors[J]. Information and documentation services, 2024, 45(3): 60-69.)
[20] 王烽权, 江积海. 互联网短视频商业模式如何实现价值创造?——抖音和快手的双案例研究[J]. 外国经济与管理, 2021, 43(2): 3-19. (WANG F Q, JIANG J H. How does the Internet short video business model realize value creation? a comparative case study of Douyin and Kuaishou[J]. Foreign economics & management, 2021, 43(2): 3-19.)
[21] 石宇, 胡昌平, 时颖惠. 个性化推荐中基于认知的用户兴趣建模研究[J]. 情报科学, 2019, 37(6): 37-41. (SHI Y, HU C P, SHI Y H. User profiles modeling based on cognition in personalized recommendation[J]. Information science, 2019, 37(6): 37-41.)
[22] 蒋武轩, 易明, 熊回香, 等. 网络社交平台中社群标签生成研究[J]. 图书情报工作, 2021, 65(10): 79-89. (JIANG W X, YI M, XIONG H X, et al. Research on the generation of community tags in network social platforms[J]. Library and information service, 2021, 65(10): 79-89.)
[23] 金立印, 邹德强, 裘理瑾. 服务定制情境下选项的战略呈现:呈现框架对消费者选择的影响[J]. 南开管理评论, 2009, 12(6): 90-100. (JIN L Y, ZOU D Q, QIU L J. The effect of option framing on consumer choice in service customization context[J]. Nankai business review, 2009, 12(6): 90-100.)
[24] 陈梅梅, 刘利梅, 施驰玮, 等.推荐规模对个性化推荐系统用户决策的影响研究[J]. 南开管理评论, 2020, 23(1): 180-188. (CHEN M M, LIU L M, SHI C W, et al. The effect of recommendation scale on the personalized recommendation system in influencing users decision-making[J]. Nankai business review, 2019, 23(1): 180-188.)
[25] 谭春辉, 涂瑞德. 融合群体兴趣和核心用户影响的群组推荐方法研究[J]. 情报理论与实践, 2024, 47(6): 147-153. (TAN C H, TU R D. Group recommendation method combining group interest and core user influence[J]. Information studies: theory&application, 2024, 47(6): 147-153.)
[26] CASS R S. Infotopia: how many minds produce knowledge[M]. New York: Oxford University Press, 2006.
[27] 喻国明, 曲慧. “信息茧房”的误读与算法推送的必要——兼论内容分发中社会伦理困境的解决之道[J]. 新疆师范大学学报(哲学社会科学版), 2020, 41(1): 127-133. (YU G M, QU H. The misreading of "information cocoon" and the necessity of algorithmic push: on the solution to the social ethical dilemma in content distribution[J]. Journal of Xinjiang Normal University (philosophy and social sciences), 2019, 41(1): 127-133.)
[28] 张生太, 杨阳, 袁艺玮, 等. 短视频个性化推荐对用户信息采纳意愿的影响[J]. 科研管理, 2024, 45(4): 175-184. (ZHANG S T, YANG Y, YUAN Y W, et al. Influence of personalized recommendation of short-videos on users' information adoption intention[J]. Science research management, 2024, 45(4): 175-184.)
[29] ELI P. The Filter bubble: what the Internet is hiding from you[M]. New York: Penguin Press, 2011.
[30] HUANG Y, ZHOU L, ZENG Z, et al. An empirical study on the phenomenon of information narrowing in the context of personalized recommendation[C]//2nd international conference on artificial intelligence and computer science. Hangzhou: Journal of Physics: Conference Series, 2020, 1631(1): 012109.
[31] 胡泳. 新词探讨: 回声室效应[J]. 新闻与传播研究, 2015, 22(6): 109-115. (HU Y. Discussion of new words: echo chamber effect[J]. Journalism & communication, 2015, 22(6): 109-115.)
[32] VAN A M, BRYNJOLFSSON E. Could the Internet balkanize science?[J]. Science, 1996, 274(5292): 1479-1480.
[33] ANTHONY C. Chilling effects: the communications decency act and the online market-place of ideas[J]. University of Miami review, 2008, 63(1): 1-128.
[34] SEARGEANT P, TAGG C. Social media and the future of open debate: a user-oriented approach to Facebook’s filter bubble conundrum[J]. Discourse, context & media, 2018, 27(3): 41-48.
[35] 彭兰. 导致信息茧房的多重因素及“破茧”路径[J]. 新闻界, 2020(1): 30-38, 73. (PENG L. Multiple factors resulting in information cocoon and the approach of breakthrough[J]. Journalism and mass communication, 2020(1): 30-38, 73.)
[36] 叶莎莎, 杜婉鹏, 杜杏叶. 信息茧房视域下移动知识服务使用影响因素研究[J]. 图书情报工作, 2022, 66(16): 117-124. (YE S S, DU W P, DU X Y. Research on influencing factors of mobile knowledge service usage from the perspective of information cocoons [J]. Library and information services, 2022, 66(16): 117-124.)
[37] 郭迅华, 吴鼎, 卫强, 等. 机器学习与用户行为中的偏差问题:知偏识正的洞察[J]. 管理世界, 2023, 39(5): 145-159, 199, 160-162. (GUO X H, WU D, WEI Q, et al. The problem of biases in machine learning and user behavior: insights into knowing the deviated and upholding the undeviated[J]. Journal of management world, 2023, 39(5): 145-159, 199, 160-162.)
[38] 温凤鸣, 解学芳. 短视频推荐算法的运行逻辑与伦理隐忧——基于行动者网络理论视角[J]. 西南民族大学学报(人文社会科学版), 2022, 43(2): 160-169. (WEN F M, XIE X F. Hybrid recommendation algorithm for removing popularity bias based on feature embedding[J]. Journal of Southwest Minzu University (humanities and social sciences edition), 2022, 43(2): 160-169.)
[39] 中央网络安全和信息化委员会办公室, 中华人民共和国国家互联网信息办公室. 关于开展“清朗·整治短视频信息内容导向不良问题”专项行动的通知[EB/OL]. [2024-10-29]. https://www.cac.gov.cn/2023-12/12/c_1704042778297969.htm. (Office of the Central Cyberspace Affairs Commission, Cyberspace Administration of the People's Republic of China. Implementation of "clear, short video information content leads to bad problem" special action to inform[EB/OL]. [2024-10-29]. https://www.cac.gov.cn/2023-12/12/c_1704042778297969.htm.)
[40] 肖红军.算法责任:理论证成、全景画像与治理范式[J]. 管理世界, 2022, 38(4): 200-226. (XIAO H J. Algorithmic responsibility: theoretical justification, panoramic portrait and governance paradigm[J]. Journal of management world, 2022, 38(4): 200-226.)
[41] WILLEMSEN M C, GRAUS M P, KNIJENBURG B P. Understanding the role of latent feature diversification on choice difficulty and satisfaction[J]. User modeling and user-adapted interaction, 2016, 26(4): 347-389.
[42] YIN H, ZHOU X, CUI B, et al. Adapting to user interest drift for poi recommendation[J]. IEEE transactions on knowledge and data engineering, 2016, 28(10): 2566–2581.
[43] PIAO G, BRESLIN J G. Exploring dynamics and semantics of user interests for user modeling on Twitter for link recommendations[C]//International conference on semantic system. New York: ACM, 2016: 81-88.
[44] 张诚, 王富荣, 郁培文, 等. 基于深度增强学习的个性化动态促销[J]. 管理世界, 2023, 39(5): 160-178. (ZHANG C, WANG F R, YU P W, et al. Personalized dynamic promotion based on deep reinforcement learning[J]. Journal of management world, 2023, 39(5): 160-178.)
[45] 李媛媛, 李旭晖. 结合本体与社会化标签的用户动态兴趣建模研究[J]. 情报学报, 2020, 39(4): 436-449. (LI Y Y, LI X H. Modeling research of user dynamic interest based on ontology and folksonomy[J]. Journal of the China society for scientific and technology information, 2019, 39(4): 436-449.)
[46] 仲兆满, 管燕, 胡云, 等. 基于背景和内容的微博用户兴趣挖掘[J]. 软件学报, 2017, 28(2): 278-291. (ZHONG Z M, GUAN Y, HU Y, et al. Mining user interests on Microblog based on profile and content[J]. Journal of software, 2017, 28(2): 278-291.)
[47] 吴迪, 杨利君, 马文莉. 时间感知的用户长短期兴趣特征分离推荐算法[J]. 计算机工程与设计, 2024, 45(5): 1443-1450. (WU D, YANG L J, MA W L. Time-aware recommendation algorithm for user long- and short-term interest features separation[J]. Computer engineering and design, 2024, 45(5): 1443-1450.)
[48] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in neural information processing systems 30: annual conference on neural information processing systems 2017. New York: Curran Associates, 2017: 5998-6008.
[49] OpenAI. GPT-4 technical report[EB/OL]. [2024-10-29]. https://arxiv.org/abs/2303.08774.
[50] TOUVRON H, MARTIN L, STONE K, et al. Llama 2: open foundation and fine-tuned chat models[EB/OL]. [2014-10-29]. https://arxiv.org/abs/2307.09288.
[51] SUN Y, WANG S, FENG S, et al. ERNIE 3.0: Large-scale knowledge enhanced pre-training for language understanding and generation[EB/OL]. [2024-10-29]. https://arxiv.org/abs/2107.02137.
[52] REN X Z, ZHOU P Y, MENG X F, et al. PanGu-Σ: Towards trillion parameter language model with sparse heterogeneous computing[EB/OL]. [2024-10-29]. https://arxiv.org/abs/2303.10845.
[53] DAVENPORT T H, RONANKI R. Artificial intelligence for the real world[J]. Harvard business review, 2018, 96(1): 108-116.
[54] BROWN T, MANN B, RYDER N, et al. Language models are few-shot learners[C]//Advances in neural information processing system. New York: Curran Associates, 2020: 1877-1901.
[55] OUYANG L, WU J, JIANG X, et al. Training language models to follow instructions with human feedback[C]//Advances in neural information processing systems. New York: Curran Associates, 2022: 27730-27744.
[56] WEI J, WANG X Z, SCHUURMANS D, et al. Chain of thought prompting elicits reasoning in large language models[C]//Advances in neural information processing systems. New York: Curran Associates, 2022: 24824-24837.
[57] 吕巍, 杨颖, 张雁冰. AI个性化推荐下消费者感知个性化对其点击意愿的影响[J]. 管理科学, 2020, 33(5): 44-57. (LV W, YANG Y, ZHANG Y B. Effect of consumers' perceived personalization on their click-through intention under AI personalized recommendations[J]. Journal of management science, 2019, 33(5): 44-57.)
[58] 毕达天, 王璐, 王雨菲, 等. AIGC产品用户需求特征体系构建及改进策略研究[J]. 图书情报工作, 2024, 68(14): 14-24. (BI D T, WANG L, WANG Y F, et al. Research on the construction of user demand characteristic system and improvement strategy of AIGC products[J]. Library and information service, 2024, 68(14): 14-24.)
[59] 张鹤译, 王鑫, 韩立帆, 等. 大语言模型融合知识图谱的问答系统研究[J]. 计算机科学与探索, 2023, 17(10): 2377-2388. (ZHANG H L, WANG X, HAN L F, et al. Research on question answering system on joint of knowledge graph and large language models[J]. Journal of frontiers of computer science and technology, 2023, 17(10): 2377-2388.)
[60] 高云帆, 郁董卿, 王思琪, 等. 大语言模型驱动的选址推荐系统[J]. 计算机研究与发展, 2024, 61(7): 1681-1696. (GAO Y F, YU D Q, WANG S Q, et al. Large language model powered site selection recommender system[J]. Journal of computer research and development, 2024, 61(7): 1681-1696.)
[61] 杨波, 孙晓虎, 党佳怡, 等. 面向医疗问答系统的大语言模型命名实体识别方法[J]. 计算机科学与探索, 2023, 17(10): 2389-2402. (YANG B, SUN X H, DANG J Y, et al. Named entity recognition method of large language model for medical question answering system[J]. Journal of frontiers of computer science and technology, 2023, 17(10): 2389-2402.)
[62] 朱铮雄, 周智宏. 研究使用GPT构建大语言模型智能母基金决策投资支持系统[J]. 计算机应用与软件, 2024, 41(5): 21-26. (ZHU Z X, ZHOU Z H. Building a large language modeling intelligent fund of funds decision making and investment support system using GPT[J]. Computer applications and software, 2024, 41(5): 21-26.)
[63] 陈治平, 胡宇舟, 顾学道. 聚类算法在电信客户细分中的应用研究[J]. 计算机应用, 2007(10): 2566-2569, 2577. (CHEN Z P, HU Y Z, GU X D. Applied research of clustering algorithm in telecom customer segments[J]. Journal of computer applications, 2007(10): 2566-2569, 2577.)
[64] 徐翔斌, 王佳强, 涂欢, 等.基于改进RFM模型的电子商务客户细分[J]. 计算机应用, 2012, 32(5): 1439-1442. (XV X B, WANG J Q, TU HUAN, et al. Customer classification of E-commerce based on improved RFM model[J]. Journal of computer applications, 2012, 32(5): 1439-1442.)
[65] COHEN M D. Exploiting response models: optimizing cross-sell and up-sell opportunities in banking[J]. Information systems, 2004, 29(4), 327-341.
[66] 田莹颖. 基于社会化标签系统的个性化信息推荐探讨[J]. 图书情报工作, 2010, 54(1): 50-53, 120. (TIAN Y Y. On personalized information recommendation based on social tagging system[J]. Library and information service, 2010, 54(1): 50-53, 120.)
[67] RESNICK P, VARIAN H R. Recommender systems[J]. Communications of the ACM, 1997, 40(3): 56-58.
[68] 孟祥武, 刘树栋, 张玉洁, 等. 社会化推荐系统研究[J]. 软件学报, 2015, 26(6): 1356-1372. (MENG X W, LIU S D, ZHANG Y J, et al. Research on social recommendation system[J]. Journal of software, 2015, 26(6): 1356-1372.)
[69] 赵青, 张利, 薛君. 网络用户粘性行为形成机理及实证分析[J]. 情报理论与实践, 2012, 35(10): 25-29. (ZHAO Q, ZHANG L, XUE J. The formation mechanism of Internet user stickiness behavior & its empirical analysis[J]. Information studies: theory&application, 2012, 35(10): 25-29.)
[70] 周军杰. 社会化商务背景下的用户粘性:用户互动的间接影响及调节作用[J]. 管理评论, 2015, 27(7): 127-136. (ZHOU J J. User stickiness in social commerce era: the indirect effect and moderating role of member interaction[J]. Management review, 2015, 27(7): 127-136.)
[71] 刘志明, 刘鲁. 微博网络舆情中的意见领袖识别及分析[J]. 系统工程, 2011, 29(6): 8-16. (LIU Z M, LIU L. Recognition and analysis of option leaders in microblog public options[J]. Systems engineering, 2011, 29(6): 8-16.)
[72] GAO C M, LI S J, ZHANG Y, et al. KuaiRand: an unbiased sequential recommendation dataset with randomly exposed videos[EB/OL]. [2024-10-29]. https://arxiv.org/abs/2208.08696.
[73] JOHN C, FRED E H. Tested advertising methods[M]. New Jersey: Prentice Hall, 1997.
[74] 陈国青, 任明, 卫强, 等. 数智赋能: 信息系统研究的新跃迁[J]. 管理世界, 2022, 38(1): 180-196. (CHEN G Q, REN M, WEI Q, et al. Data-intelligence empowerment: a new leap of information system research[J]. Journal of management world, 2022, 38(1): 180-196.)
[75] 丁晓东. 论算法的法律规制[J]. 中国社会科学, 2020(12): 138-159, 203. (DING X D. On the legal regulation of algorithms[J]. Social sciences in China, 2020(12): 138-159, 203.)
[76] 廖备水. 论新一代人工智能与逻辑学的交叉研究[J]. 中国社会科学, 2022(3): 37-54, 204-205. (LIAO B S. On the crossover study of the new generation of artificial intelligence and logic[J]. Social sciences in China, 2022(3): 37-54, 204-205.)