[Purpose/significance] Through the fitting analysis of the citation curves of emerging technology topics, this paper refined and summarized the main types and characteristics of the citation curves, in order to provide a useful reference for the study of prediction methods for radical innovation topics at the micro level.[Method/process] Firstly, the hypothesis of using citation curves to trace the emerging technology topics to produce radical innovation was proposed and the concept and measurement method of the transition index were proposed. The criteria of predicting radical innovation were summarized and the method model of radical innovation identification was constructed from the two dimensions of knowledge transition and continuous growth. Then used the time slices cited data of each emerging technology topic to construct the citation curves, classify and summarize the types and characteristics of citation curves of different emerging technology topics.[Result/conclusion] The citation curves of emerging technology topics includes four types:continuous growth in the near future; continuous decline in the near future; short life cycle; consistent trends in similar years. According to the identification criteria of radical innovation, the citation curves have the potential to become radical innovation if they have many transitions and a large transition range, and the highest citation peak occurs later, and maintains a high citation rate in the near future with a sustained stable or rapid growth. Combined with the assessment of the prediction results by domain experts and the research progress of different emerging technology topics, it is verified that the citation curve fitting analysis can effectively predict the breakthrough of emerging technology topics.
[1] 张洪石. 突破性创新动因与组织模式研究[D]. 杭州:浙江大学, 2005.
[2] ROTOLO D, HICKS D, MARTIN B R. What is an emerging technology?[J]. Research policy, 2015, 44(10):1827-1843.
[3] 罗瑞, 许海云, 董坤. 领域前沿识别方法综述[J]. 图书情报工作,2018,62(23):119-131.
[4] 张金柱, 张晓林. 基于专利科学引文的突破性创新识别研究述评[J]. 情报学报,2016,35(09):955-962.
[5] 万宁. 浅析颠覆性创新、破坏性创新和突破性创新三者关系[J]. 商, 2015(30):122-123.
[6] 陈傲, 柳卸林. 突破性技术从何而来?——一个文献评述[J]. 科学学研究,2011,29(9):1281-1290.
[7] DESS G G, BEARD D W. Dimensions of organizational task environments[J]. Administrative science quarterly, 1984, 29(1):52-73.
[8] KOSHLAND D E. The cha-cha-cha theory of scientific discovery[J]. Science, 2007, 317(5839):761-762.
[9] TUSHMAN M L, ANDERSON P. Technological discontinuities and organizational environments[J]. Administrative science quarterly, 1986, 31(3):439-465.
[10] KOTELNIKOV V. Radical innovation versus incremental innovation[M]. Boston:Harvard Business School Press, 2000.
[11] DOYLE J F. Radical innovation:how mature companies can outsmart upstarts[J]. Research-technology management, 2000, 43(10):706-707.
[12] ZHOU K Z, YIM C K, TSE D K. The effects of strategic orientations on technology-and market-based breakthrough innovations[J]. Journal of marketing, 2005, 69(2):42-60.
[13] CHANDY R K, TELLIS G J. Organizing for radical product innovation:the overlooked role of willingness to cannibalize[J]. Journal of marketing research, 1998, 35(4):474-487.
[14] 付玉秀, 张洪石. 突破性创新:概念界定与比较[J]. 数量经济技术经济研究, 2004, 21(3):73-83.
[15] SCHOENMAKERS W, DUYSTERS G. The technological origins of radical inventions[J]. Research policy, 2010, 39(8):1051-1059.
[16] DAHLIN K B, BEHRENS D M. When is an invention really radical?:defining and measuring technological radicalness[J]. Research policy, 2005, 34(5):717-737.
[17] 张金柱. 利用被引科学知识的突变识别突破性创新[M]. 北京:科学出版社, 2017.
[18] SMALL H. Referencing as cooperation or competition[M]. Berlin:Walter de Gruyter, 2016.
[19] YOON J, KIM K. Identifying rapidly evolving technological trends for R&D planning using SAO-based semantic patent networks[J]. Scientometrics, 2011, 88(1):213-228.
[20] SOOD A, TELLIS G J. Technological evolution and radical innovation[J]. Journal of marketing, 2005, 69(3):152-168.
[21] ANDERSON P, TUSHMAN M L. Technological discontinuities and dominant designs:a cyclical model of technological change[J]. Administrative science quarterly, 1990, 35(4):604-633.
[22] TELLIS G J. Disruptive technology or visionary leadership?[J]. Journal of product innovation management, 2006, 23(1):34-38.
[23] KUHN T S. The structure of scientific revolution[M]. Chicago:University of Chicago Press, 1999.
[24] 李勇, 安新颖, 赵迎光, 等. 结合知识组织体系的突发主题监测研究[J]. 情报理论与实践, 2013, 36(5):120-123.
[25] KLEINBERG J. Bursty and hierarchical structure in streams[J]. Data mining & knowledge discovery, 2003, 7(4):373-397.
[26] 张金柱, 张晓林. 利用引用科学知识突变识别突破性创新[J]. 情报学报, 2014, 33(3):259-266.
[27] 王莉亚. 基于离群数据的主题演化研究[D]. 北京:中国科学院研究生院, 2012.
[28] ARTHUR W B. The structure of invention[J]. Research policy, 2007, 36(2):274-287.
[29] ARTHUR W B. The nature of technology:what it is and how it evolves[M]. New York:Free Press, 2009.
[30] FUNK R J, OWEN-SMISH J. A dynamic network measure of technological change[J]. Management Science, 2016, 63(3):587-900.
[31] CHEN C. Turning points:the nature of creativity[J]. Nature of creativity contemporary psychological perspectives, 2011, 18(1):87-98.
[32] CHEN C, CHEN Y, HOROWITZ M, et al. Towards an explanatory and computational theory of scientific discovery[J]. Journal of informetrics, 2009, 3(3):191-209.
[33] CAMPANARIO J M. Rejecting and resisting Nobel class discoveries:accounts by Nobel laureates[J]. Scientometrics, 2009, 81(2):549-565.
[34] FANG H. An explanation of resisted discoveries based on construal-level theory[J]. Science & engineering ethics, 2015, 21(1):41-50.
[35] RAAN A F J V. Sleeping beauties in science[J]. Scientometrics, 2004, 59(3):467-472.
[36] PALOMERAS N. Sleeping patents:any reason to wake up?[J]. Iese research papers, 2003, 20(35):D506.
[37] 杜建. "睡美人"文献的识别方法与唤醒机制研究[D]. 南京:南京大学,2017.
[38] AVRAMESCU A. Actuality and obsolescence of scientific literature[J]. Journal of the American Society for Information Science & Technology, 2010, 30(5):296-303.
[39] 李江, 姜明利, 李玥婷. 引文曲线的分析框架研究——以诺贝尔奖得主的引文曲线为例[J]. 中国图书馆学报, 2014, 40(2):41-49.
[40] 李柏洲, 赵健宇, 苏屹. 基于能级跃迁的组织学习-知识创造过程动态模型研究[J]. 科学学研究,2013,31(6):913-9225.
[41] 张立超, 刘怡君. 技术轨道的跃迁与技术创新的演化发展[J]. 科学学研究,2015,33(1):137-145.
[42] 郭涵宁. 多元科学指标视角下的新兴研究领域识别探索[D]. 大连:大连理工大学,2013.
[43] TRAAG V A, WALTMAN L, VAN ECK N J. From Louvain to Leiden:guaranteeing well-connected communities[J]. Scientific reports, 2019, 9(1):5233.
[44] 生物谷.[盘点]再生医学中干细胞和新材料的研究和应用(一)[EB/OL].[2019-09-16]. https://meeting.bioon.com/2018StemCells/news-detail/b04d4462ec057124.
[45] GUYETTE J P, CHAREST J M, MILLS R W, et al. Bioengineering human myocardium on native extracellular matrix[J]. Circulation research, 2016, 118(1):56-72.
[46] ClinicalTrials.gov[EB/OL].[2019-09-16]. https://clinicaltrials.gov/ct2/results?cond=stem+cell+cord+injury&term=&cntry=&state=&city=&dist=.
[47] CURTIS E, MARTIN J R, GABEL B, et al. A first-in-human, phase I study of neural stem cell transplantation for chronic spinal cord Injury[J]. Cell stem cell, 2018, 22(6):941-950.
[48] HIROMI K, KEN K, ADLER A F, et al. Generation and post-injury integration of human spinal cord neural stem cells[J]. Nature methods, 2018, 15(9):723-731.
[49] SULLIVAN W J, MULLEN P J, SCHMID EW, et al. Extracellular matrix remodeling regulates glucose metabolism through TXNIP destabilization[J]. Cell, 2018, 175(1):117-132.
[50] 国际肝病. APASL2019焦点丨王福生院士:干细胞治疗肝硬化和肝衰竭——进展与研究热点[EB/OL].[2019-09-16]. http://www.ihepa.com:8088/default/htmlDocument/2019-02-22/detail_16360.html.
[51] 王华. 复发/难治性霍奇金淋巴瘤自体造血干细胞移植前苯达莫斯汀、吉西他滨、长春瑞滨作为挽救化疗方案较好[EB/OL].[2019-09-16]. https://www.bjcancer.org/Mobile/Article/Index/4091.
[52] 闵超, DING Y, 李江, 等. 单篇论著的引文扩散[J]. 情报学报,2018,37(04):341-350.
[53] 优竹网. 趋势丨37个干细胞临床项目通过国家备案,治疗疾病范围极广(附全目录)[EB/OL].[2019-09-16]. http://www.sohu.com/a/317270049_827862.
[54] 亿欧. 干细胞治疗研究进展和产业分析[EB/OL].[2019-09-16]. https://www.iyiou.com/p/95934.html.