知识组织

融合结构与文本特征的知识图谱关系预测方法研究

  • 林泽斐 ,
  • 欧石燕
展开
  • 1. 南京大学信息管理学院 南京 210093;
    2. 福建师范大学社会发展学院 福州 350007
林泽斐(ORCID:0000-0001-8637-7359),讲师,博士研究生。

收稿日期: 2020-06-09

  修回日期: 2020-08-19

  网络出版日期: 2020-11-05

基金资助

本文系国家社会科学基金重点项目"基于关联数据的学术文献内容语义发布及其应用研究"(项目编号:17ATQ001)研究成果之一。

Research on Relation Prediction in Knowledge Graphs by Fusing Structure and Text Features

  • Lin Zefei ,
  • Ou Shiyan
Expand
  • 1 School of Information Management, Nanjing University, Nanjing 210093;
    2 College of Social Development, Fujian Normal University, Fuzhou 350007

Received date: 2020-06-09

  Revised date: 2020-08-19

  Online published: 2020-11-05

Supported by

 

摘要

[目的/意义] 提出一种融合内部结构特征和外部文本特征的知识图谱关系预测新方法,旨在预测知识图谱中两实体间缺失关系的类型。[方法/过程] 将关系路径和反映实体间关系的文本矩阵化,通过卷积神经网络学习与特定关系类型相关的结构和文本模式特征,在此基础上训练模型实现关系预测。[结果/结论] 实验结果显示,该方法在评测数据集上的性能表现超过对照方法的水平,可有效提升知识图谱关系预测的性能。通过实际应用发现,该方法在知识服务中具有良好的应用价值。

本文引用格式

林泽斐 , 欧石燕 . 融合结构与文本特征的知识图谱关系预测方法研究[J]. 图书情报工作, 2020 , 64(21) : 99 -110 . DOI: 10.13266/j.issn.0252-3116.2020.21.013

Abstract

[Purpose/significance] Relation prediction is an important task in knowledge graph completion, and plays an important role in improving the completeness of knowledge in knowledge graphs. The paper proposes a new relation prediction method that combines internal structure features and external text features, which aims to predict the missing relations between two entities in knowledge graphs. [Method/process] The method transforms the relation paths in a knowledge graph and the texts that involve entity relationships into matrixes, learns the structure features and text pattern features related to a specific relation type through convolutional neural networks, and then trains a model based on the learned features for relation prediction. [Result/conclusion] The results shows that the performance of our proposed method on evaluation data sets is superior to the state-of-the-art approaches, and the method can effectively improves the performance of knowledge graph relationship prediction. Through practical application, it wvas found that this method has high application value in knowledge services.

参考文献

[1] KEJRIWAL M. Domain-specific knowledge graph construction[M]. Berlin:Springer, 2019.
[2] 孙雨生,常凯月,朱礼军. 大规模知识图谱及其应用研究[J]. 情报理论与实践, 2018, 41(11):138-143.
[3] KROMPAβ D, BAIER S, TRESP V. Type-constrained representation learning in knowledge graphs[C]//Proceedings of international Semantic Web conference. Berlin:Springer, 2015:640-655.
[4] FAN M, ZHOU Q, ZHENG T F, et al. Distributed representation learning for knowledge graphs with entity descriptions[J]. Pattern recognition letters, 2017, 93(7):31-37.
[5] 复旦大学知识工场实验室. 中文通用百科知识图谱(CN-DBpedia)[EB/OL].[2020-07-21]. http://openkg.cn/dataset/cndbpedia.
[6] NGUYEN D Q, SIRTS K, QU L, et al. Neighborhood mixture model for knowledge base completion[C]//Proceedings of the 20th SIGNLL conference on computational natural language learning. Stroudsburg:ACL Press, 2016:40-50.
[7] 徐增林,盛泳潘,贺丽荣,等. 知识图谱技术综述[J]. 电子科技大学学报, 2016, 45(4):589-606.
[8] 刘知远,孙茂松,林衍凯,等. 知识表示学习研究进展[J]. 计算机研究与发展, 2016, 53(2):247-261.
[9] BORDES A, USUNIER N, GARCIA-DURAN A, et al. Translating embeddings for modeling multi-relational data[C]//Proceedings of advances in neural information processing systems. San Diego:Neural Information Processing Systems Foundation, 2013:2787-2795.
[10] WANG Z, ZHANG J, FENG J, et al. Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the 28th AAAI conference on artificial intelligence. Palo Alto:AAAI Press, 2014:1112-1119.
[11] LIN Y, LIU Z, SUN M, et al. Learning entity and relation embeddings for knowledge graph completion[C]//Proceedings of the 28th AAAI conference on artificial intelligence. Palo Alto:AAAI Press, 2015:2181-2187.
[12] JI G, HE S, XU L, et al. Knowledge graph embedding via dynamic mapping matrix[C]//Proceedings of the 53rd annual meeting of the ACL and the 7th international joint conference on NLP. Stroudsburg:ACL Press, 2015:687-696.
[13] 聂斌玲. 基于图结构信息的知识表示学习方法研究[D]. 杭州:浙江大学, 2019.
[14] NICKEL M, TRESP V, KRIEGEL H P. A three-way model for collective learning on multi-relational data[C]//Proceedings of the 28th international conference on machine learning. New York:ACM Press, 2011:809-816.
[15] YANG B, YIH S W, HE X, et al. Embedding entities and relations for learning and inference in knowledge bases[EB/OL].[2020-08-16]. https://arxiv.org/pdf/1412.6575.
[16] TROUILLON T, WELBL J, RIEDEL S, et al. Complex embeddings for simple link prediction[C]//Proceedings of the 33rd international conference on machine learning. New York:ACM Press, 2016:2071-2080.
[17] LAO N, MITCHELL T,COHEN W W. Random walk inference and learning in a large scale knowledge base[C]//Proceedings of the 2011 conference on empirical methods in natural language processing. Stroudsburg:ACL Press, 2011:529-539.
[18] 刘峤,韩明皓,江浏祎,等. 基于双层随机游走的关系推理算法[J]. 计算机学报, 2017, 40(6):1275-1290.
[19] XU J, CHEN K, QIU X, et al. Knowledge graph representation with jointly structural and textual encoding[C]//Proceedings of the 26th international joint conference on artificial intelligence. San Rafael:Morgan & Claypool Publishers, 2017:1318-1324.
[20] LONG T, LOWE R, CHEUNG J C, et al. Leveraging lexical resources for learning entity embeddings in multi-relational data[EB/OL].[2020-08-24]. https://arxiv.org/pdf/1605.05416.
[21] DETTMERS T, MINERVINI P, STENETORP P, et al. Convolutional 2d knowledge graph embeddings[C]//Proceedings of the 32th AAAI conference on artificial intelligence. Palo Alto:AAAI Press, 2018:1811-1818.
[22] HINTON G E, SRIVASTAVA N, KRIZHEVSKY A, et al. Improving neural networks by preventing co-adaptation of feature detectors[EB/OL].[2020-05-22]. https://arxiv.org/pdf/1207.0580.
[23] SURDEANU M, TIBSHIRANI J, NALLAPATI R, et al. Multi-instance multi-label learning for relation extraction[C]//Proceedings of the 2012 joint conference on EMNLP and computational natural language learning. Stroudsburg:ACL Press, 2012:455-465.
[24] KIM Y. Convolutional neural networks for sentence classification[C]//Proceedings of the 2014 conference on empirical methods in natural language processing. Stroudsburg:ACL Press, 2014:1746-1751.
[25] ADNAN WA, YAAKOB M, ANAS R, et al. Artificial neural network for software reliability assessment[C]//Proceedings of intelligent systems and technologies for the new millennium. Piscataway:IEEE, 2000:446-451.
[26] TOUTANOVA K, CHEN D. Observed versus latent features for knowledge base and text inference[C]//Proceedings of the 3rd workshop on continuous vector space models and their compositionality. Stroudsburg:ACL Press, 2015:57-66.
[27] Microsoft. FB15K-237 knowledge base completion dataset[EB/OL].[2020-08-10]. https://www.microsoft.com/en-us/download/details.aspx?id=52312.
[28] BISONG E. Building machine learning and deep learning models on google cloud platform[M]. Ottawa:Apress, 2019.
[29] HAN X, CAO S, LV X, et al. Openke:an open toolkit for knowledge embedding[C]//Proceedings of the 2018 conference on empirical methods in natural language processing. Stroudsburg:ACL Press, 2018:139-144.
[30] 林泽斐,欧石燕. 基于在线百科的大规模人物社会网络抽取与分析[J]. 中国图书馆学报, 2019, 45(6):100-118.
文章导航

/