[目的/意义] 回顾现有的睡美人文献识别方法,梳理不同方法的优缺点,尝试兼顾准确性与易操作性来改进睡美人文献的识别方法。[方法/过程] 基于目前发展较为成熟的Bcp指数识别法,借鉴其利用引文曲线"离散程度"进行识别这一核心思想,引入统计学中的"变异系数"概念,将其应用于不同引文曲线类型的区分,从而提出用以识别睡美人文献的PCV指数。[结果/结论] 识别结果显示,PCV指数能够较为简单、准确地识别睡美人文献,且该方法对总被引次数具有较低的依赖性。
[Purpose/significance] This paper aims to review existing identification methods of sleeping beauties in science, discuss strengths and weaknesses of different kinds of methods, and put forward a brand-new method for identifying sleeping papers. [Method/process] This study is based on the Bcp index, which is a well-developed and accurate method for identifying sleeping beauties in science. Through referring to the core idea of using the "dispersion degree" of citation curve for identification, the concept of "coefficient of variation" in statistics is introduced to the new method. Then the PCV index is proposed to identify various citation curves, sleeping beauties in particular. [Result/conclusion] As is shown in the results, PCV index can effectively identify the sleeping beauties literature. In addition, compared to the Bcp index, the new method has the advantages of simplicity and accuracy, and further reduces the dependence on the total number of citations.
[1] 李江,姜明利,李玥婷.引文曲线的分析框架研究——以诺贝尔奖得主的引文曲线为例[J].中国图书馆学报,2014,40(2):41-49.
[2] RAAN A F J V. Sleeping beauties in science[J]. Scientometrics, 2004, 59(3):467-472.
[3] 杜建,孙轶楠,张阳,等.变革性研究的科学计量学特征与早期识别方法[J].中国科学基金,2019,33(1):88-98.
[4] 宋呈玉,李秀霞,刘黎明.基于引文曲线导数的睡美人文献识别研究[J].情报资料工作,2019,40(3):33-38.
[5] 宋呈玉,李秀霞,谢瑞霞,等.基于二次函数曲线拟合的睡美人文献识别研究[J].情报杂志,2018,37(6):119-123+207.
[6] GARFIELD E. Delayed recognition in scientific discovery:Citation frequency analysis aids the search for case histories[J]. Current contents,1989,12(23):154-160.
[7] COSTAS R, LEEUWEN T N V, RAAN A F J V. Is scientific literature subject to a ‘sell-by-date’? a general methodology to analyze the ‘durability’ of scientific documents[J]. Journal of the American Society for Information Science and Technology, 2010, 61(2):329-339.
[8] WANG J. Citation time window choice for research impact evaluation[J]. Scientometrics, 2013, 94(3):851-872.
[9] LI J, SHI D, ZHAO S X, et al. A study of the "heartbeat spectra" for "sleeping beauties"[J]. Journal of informetrics, 2014, 8(3):493-502.
[10] KE Q, FERRARA E, RADICCHI F, et al. Defining and identifying sleeping beauties in science[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(24):7426-7431.
[11] PERUZZO F. Sleeping beauties and the citation dynamics in the network of scientific papers[EB/OL].[2019-09-20] http://tesi.cab.unipd.it/50039/1/Peruzzo_Fabio.pdf.
[12] 杜建,武夷山.一个用于识别睡美人文献的新的无参数指标——基于"Science"和"Nature"上睡美人文献的验证[J].情报理论与实践,2017, 40(2):19-25.
[13] TEIXEIRA A A C, VIEIRA P C, ABREU A P. Sleeping beauties and their princes in innovation studies[J]. Scientometrics, 2017, 110(2):541-580.
[14] BORNMANN L, YE Y A, YE F Y. Identifying "hot papers" and papers with "delayed recognition" in large-scale datasets by using dynamically normalized citation impact scores[J]. Scientometrics, 2018, 116(2):655-674.
[15] YE F Y, BORNMANN L. "Smart girls" versus "sleeping beauties" in the sciences:the identification of instant and delayed recognition by using the citation angle[J]. Journal of the Association of Information Science and Technology, 2018, 69(3):359-367.
[16] 宗张建.睡美人文献识别方法研究进展[J].图书情报工作, 2019, 63(16):132-142.
[17] LI J, YE F Y. Distinguishing sleeping beauties in science[J]. Scientometrics, 2016, 108(2):821-828.
[18] 杜建.睡美人文献的识别方法与唤醒机制研究[D].南京:南京大学, 2017.
[19] 王文森.变异系数——一个衡量离散程度简单而有用的统计指标[J].中国统计, 2007, (6):41-42.
[20] AVRAMESCU A. Actuality and obsolescence of scientific literature[J]. Journal of the American Society for Information Science, 1979, 30(5):296-303.
[21] AVERSA E S. Citation patterns of highly cited papers and their relationship to literature aging-a study of the working literature[J]. Scientometrics, 1985, 7(3/6):383-389.
[22] CANO V, LIND N C. Citation life cycles of ten citation classics[J]. Scientometrics, 1991, 22(2):297-312.
[23] 屈文建,胡志伟,周小渝.面向图情学科热点高被引论文引文曲线特征分析[J].情报杂志, 2017, 36(8):138-143.
[24] 李凌英,闵超,孙建军.引文波峰的量化与分布探究[J].情报学报, 2019, 38(7):697-708.
[25] 熊泽泉,段宇锋.中文学术期刊论文的引文模式研究——以2006-2008年图书情报领域期刊论文为例[J].图书情报工作, 2019, 63(8):107-115.
[26] GLÄNZEL W, SCHLEMMER B. THIJS B. Better late than never? on the chance to become highly cited only beyond the standard bibliometric time horizon[J]. Scientometrics, 2003, 58(3):571-586.
[27] ZONG Z J, LIU X Z, FANG H. Sleeping beauties with no prince based on the co-citation criterion[J]. Scientometrics, 2018, 117(3):1841-1852.
[28] 杜建,武夷山.睡美人文献的重要特征、预测线索与政策启示[J].科学学研究, 2018, 36(11):1938-1945.
[29] 郭斐,鄢小燕.睡美人文献识别方法分析与改进构想[J].图书情报工作, 2016, 60(8):93-98.
[30] 钟镇.从高被引与零被引论文的引文结构差异看Research Front与Research Frontier的区别[J].图书情报工作, 2015, 59(8):87-96.
[31] 杜建,武夷山.睡美人与王子文献的识别方法研究[J].图书情报工作, 2015, 59(19):84-92.
[32] 李秀霞,邵作运,刘超.基于K值算法的图书情报领域睡美人文献识别[J].图书情报工作, 2017, 61(21):114-122.
[33] 李江.科学中的"睡美人"与"昙花一现"现象评述[J].大学图书馆学报, 2016, 34(3):38-43.