[Purpose/Significance] To generate high-quality cultural resource tags for scenic spots, and solve the problems of difficult information retrieval and signal recommendation form in cultural tourism services.[Method/Process] First, a tag system for cultural resources including explicit and implicit tag types was designed; then, an explicit tag generation method based on feature word filtering and noise word filtering was proposed, and the calculation method of cultural perception intensity and cultural perception similarity in implicit tags was designed, and cultural resource tags of scenic spots were generated based on the above methods; finally, for different scenarios in tourism information services, retrieval methods and recommendation methods based on cultural resource tags were provided.[Result/Conclusion] Taking the real tourism data of Wuhan as an example to conduct empirical research. The results show that the tags generated based on this method can accurately describe the cultural resource characteristics of scenic spots, and the retrieval and recommendation algorithms based on tags have strong interpretability, which can effectively improve the transparency of information services and users' trust in the results, and have reference value for recommendation and interpretation research in other fields.
[1] 张朝枝, 朱敏敏. 文化和旅游融合:多层次关系内涵、挑战与践行路径[J]. 旅游学刊, 2020, 35(3):62-71.
[2] JELASSI M N, YAHIA S B, NGUIFO E M. Towards more targeted recommendations in folksonomies[J]. Social network analysis and mining, 2015, 5(1):1-18.
[3] GUPTA M, LI R, YIN Z, et al. Survey on social tagging techniques[J]. ACM sigkdd explorations newsletter, 2010, 12(1):58-72.
[4] 李旭晖, 李媛媛, 马费成. 我国图情领域社会化标签研究主要问题分析[J]. 图书情报工作, 2018, 62(16):120-131.
[5] 孟秋晴, 熊回香, 童兆莉, 等. 基于在线问诊文本信息的医生标签自动生成研究[J]. 情报科学, 2020, 38(5):58-64,72.
[6] SHEN Z, ARSLAN AY S, KIM S H, et al. Automatic tag generation and ranking for sensor-rich outdoor videos[C]//Proceedings of the 19th ACM international conference on multimedia. New York:Association for Computing Machinery, 2011:93-102.
[7] 叶佳鑫, 熊回香, 童兆莉, 等. 在线医疗社区中面向医生的协同标注研究[J]. 数据分析与知识发现, 2020, 4(6):118-128.
[8] 吴小兰, 章成志. 结合用户关系网和标签共现网的微博用户标签推荐研究[J]. 情报学报, 2015, 34(5):459-465.
[9] 熊回香, 叶佳鑫. 基于LDA主题模型的微博标签生成研究[J]. 情报科学, 2018, 36(10):7-12.
[10] 蒋武轩, 易明, 熊回香, 等. 网络社交平台中社群标签生成研究[J]. 图书情报工作, 2021, 65(10):79-89.
[11] ZENG L, GUO X, YANG C, et al. TagNN:a code tag generation technology for resource retrieval from open-source big data[J]. Wireless communications and mobile computing, 2021:9956207.
[12] 赵辉, 化柏林, 何鸿魏. 科技情报用户画像标签生成与推荐[J]. 情报学报, 2020, 39(11):1214-1222.
[13] 李蕾, 章成志. 社会化标签质量评估研究综述[J]. 现代图书情报技术, 2013(11):22-29.
[14] 章成志, 赵华, 李蕾, 等. 中英文图片标签质量差异比较研究——以Flickr为例[J]. 情报理论与实践, 2018, 41(4):123-127.
[15] 章成志, 李蕾. 社会化标签质量自动评估研究[J]. 现代图书情报技术, 2015(10):2-12.
[16] 章成志, 顾晓雪. 区分标签质量的机器生成标签聚类研究[J]. 现代图书情报技术, 2015(10):22-29.
[17] 李雅美, 王昌栋. 基于标签的个性化旅游推荐[J]. 中国科学技术大学学报, 2017, 47(7):547-555.
[18] 史一帆, 文益民, 蔡国永, 等. 基于景点标签的协同过滤推荐[J]. 计算机应用, 2014, 34(10):2854-2858.
[19] 单晓红, 张晓月, 刘晓燕. 基于在线评论的用户画像研究——以携程酒店为例[J]. 情报理论与实践, 2018, 41(4):99-104,149.
[20] 刘海鸥, 孙晶晶, 苏妍嫄, 等. 基于用户画像的旅游情境化推荐服务研究[J]. 情报理论与实践, 2018, 41(10):87-92.
[21] 赵平, 孙连英, 涂帅, 等. 改进的知识迁移景点实体识别算法研究及应用[J]. 数据分析与知识发现, 2020, 4(5):118-125.
[22] 刘小安, 彭涛. 基于卷积神经网络的中文景点识别研究[J]. 计算机工程与应用, 2020, 56(4):140-145.
[23] 杨一帆, 陈文亮. 旅游场景下的实体别名抽取联合模型[J]. 中文信息学报, 2020, 34(6):55-63.
[24] 尹小娜, 郑向敏. 基于网络文本分析的三坊七巷游客文化感知研究[J]. 北京第二外国语学院学报, 2015, 37(9):62-66,33.
[25] 李东晔, 黄震方, 叶滨鸿, 等. 游客慢文化感知维度分异与影响因素研究——以高淳国际慢城为例[J]. 人文地理, 2020, 35(1):150-160.
[26] 庞朴. 文化结构与近代中国[J]. 中国社会科学, 1986(5):81-98.
[27] SALTON G, BUCKLEY C. Term-weighting approaches in automatic text retrieval[J]. Information processing & management, 1988, 24(5):513-523.
[28] MIHALCEA R, TARAU P. Textrank:bringing order into text[C]//Proceedings of the 2004 conference on empirical methods in natural language processing. Barcelona:Association for Computational Linguistics, 2004:404-411.
[29] SUN J. "Jieba" Chinese text segmentation:built to be the best Python Chinese word segmentation module[EB/OL].[2022-01-15]. https://github.com/fxsjy/jieba.
[30] BENGIO Y, DUCHARME R, VINCENT P, et al. A neural probabilistic language model[J]. Journal of machine learning research, 2003, 3(Feb):1137-1155.
[31] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[J]. arXiv preprint arXiv:1301.3781, 2013.
[32] ANDREAS M. Word_cloud[EB/OL].[2022-01-15]. https://github.com/amueller/word_cloud.
[33] 赵京胜, 朱巧明, 周国栋, 等. 自动关键词抽取研究综述[J]. 软件学报, 2017, 28(9):2431-2449.
[34] 项亮. 推荐系统实践[M]. 北京:人民邮电出版社, 2012.
[35] 王喆. 深度学习推荐系统[M]. 北京:电子工业出版社, 2020.