[目的/意义] 为全面、客观、高效、直观地掌握科技领域主题的发展规律和演变趋势,提出一种基于多源数据的领域主题演化路径识别和分析框架。[方法/过程] 获取不同来源的科技文献数据,利用多维样本有序聚类方法辅助时间切片,基于改进的词袋构建方法,提升LDA模型主题识别效果,借助Louvain社区发现算法在主题层进行多源数据的融合,分析领域主题演化路径。[结果/结论] 利用美国太赫兹研究领域基金项目、论文和专利3种来源的数据进行实证研究,结果表明,3种数据源能够清晰划分出4个时间窗口,改进的词袋构建方法能够表征更准确的领域信息内涵,主题社区有助于从多源数据复杂的演化网络中厘清主题演化脉络。
关键词:多源数据融合|领域主题演化路径|LDA主题模型|词袋构建|时间窗口划分|有序样本聚类|Louvain社区|发现算法