Selection of Academic Influence Evaluation Index of Network Science and Technology Articles

  • Shen Xiaoling ,
  • Yan Weizhong
Expand
  • 1. Library of Anhui University of Finance & Economics, Bengbu 233030;
    2. Machine Learning Lab GE Global Research Center Niskayuna, New York 12065

Received date: 2012-09-28

  Revised date: 2012-12-05

  Online published: 2013-02-05

Abstract

The influence evaluation effect of network science and technology articles depends on the selection of evaluation index variable. Firstly, this paper associates influence evaluation of science and technology articles with their ranking in popular open-access journal databases. It takes mathematics articles from the WOS database as sample, and respectively selects ten articles from the top six ranking groups which are 0.01%、0.01%-0.1%、0.1%-1%、1%-10%、10%-20% and 20%-50%. With literature information method, 28 different features are extracted from each of these articles from three aspects of the article content, the journal publishing articles, and the authors. Then it takes the ranking level of 324 articles and 28 academic link indexes as the sample, to study the "ordinal regression model". Secondly, with Lasso method, based on the variable selection and parameter estimation of 28 academic link indexes, it obtains 9 features that are considered to be the basic characteristics indexes to evaluate academic influence of network science and technology articles. Thirdly, based on the ranking level of 418 OA articles, and the selection of 20 network influence measurement indexes and its derivative variable, this paper gets 5 evaluation indexes of network transmission and utilization of impact. Finally, this paper generalizes 14 academic influence evaluation indexes of network science and technology articles.

Cite this article

Shen Xiaoling , Yan Weizhong . Selection of Academic Influence Evaluation Index of Network Science and Technology Articles[J]. Library and Information Service, 2013 , 57(03) : 69 -77 . DOI: 10.7536/j.issn.0252-3116.2013.03.014

References

[1] 赵蓉英,罗艳玲.科技论文网络发表的科研管理与评价机制之浅议.download/downPaper/200902-716.

[2] 邱均平,安璐.中文期刊影响因子与网络影响因子和外部链接数的关系研究[J].情报学报,2003(4):398-402.

[3] 邱均平,于长福,马瑞敏,等. 图林博客的社会网络分析[J]. 图书情报工作,2008,52(11):6-9.

[4] 邱均平,王菲菲.基于博客社区好友链接的知识交流状况分析——以科学网博客为例[J] 图书情报知识,2011(6):25-33.

[5] Thelwall M, Sud P. A comparison of methods for collecting Web citation data for academic organizations[J]. Journal of the American Society for Information Science and Technology,2011,62(8): 1488-1497.

[6] Zhao S X, Rousseau R, Ye F Y. h-Degree as a basic measure in weighted networks[J]. Journal of Informetrics,2011,5(4): 668-677.

[7] Liu Xinhai, Glnzel W, Moor B D. Hybrid clustering of multi-view data via Tucker-2 model and its application[J]. Scientometrics,2011,88(3): 819-839.

[8] 郑曦,孙建军. 链接分析领域的作者合作网络及其分析[J].图书情报知识,2009(2):29-32.

[9] 孙建军,屈良. 加权入链数:对链接分析中绝对入链数的修正[J] 情报科学,2012(2):161-165,172.

[10] Abbasi A, Altmann J, Hossain L. Identifying the effects of co-authorship networks on the performance of scholars: A correlation and regression analysis of performance measures and social network analysis measures[J]. Journal of Informetrics, 2011,5(4): 594-607.

[11] Abbasi A, Chung K S K, Hossain L. Egocentric analysis of co-authorship network structure, position and performance[J]. Informaotion Processing & Management, 2012, 48(4): 671-679.

[12] 曹兴, 周密, 刘芳. 网络科技论文学术影响力评价指标体系研究[J]. 科学决策, 2010(7): 30-37,52.

[13] 邱均平,李江.链接分析与引文分析的比较[J].中国图书馆学报,2008(1):60-64.

[14] Li Xuemei, Thelwall M, Musgrove P,et al. The relationship between the WIFs or inlinks of Computer Science Departments in UK and their RAE ratings or research productivities in 2001[J]. Scientometrics, 2003,57(2): 239-255.

[15] 邱均平,文庭孝.评价学:理论·方法·实践[M].北京:科学出版社,2010:135-137.

[16] 袁顺波,华薇娜.基于引文与网络链接的开放存取期刊学术影响力评价[J],大学图书馆学报,2010(6):108-115.

[17] 刘春丽.Web 2.0环境下的科学计量学:选择性计量学[J].图书情报工作,2012,56(7):52-56.

[18] 王凌峰,陈松青.基于在线数据库的论文自组织评价机制[J].科技管理研究,2006 (3) :155-158.

[19] 袁顺波,华薇娜.基于引文与网络链接的开放存取期刊学术影响力评价[J].大学图书馆学报,2010(6):108-115.

[20] Baccianella S, Esuli A,Sebastiani F. Feature selection for ordinal regression//Proceedings of the 25th ACM Symposium on Applied Computing (SAC'10).New York:ACM, 2010:1748-1754.

[21] Guyon I, Elisseeff A. An introduction to variable and feature selection[J].Journal of Machine Learning Research, 2003,3(7-8):1157-1182.

[22] Tibshirani R. Regression shrinkage and selection via the lasso[J].Journal of the Royal Statistical Society: Series B, 1996,58(1):267-288.

Outlines

/