Library and Information Service >
Research on the Cold Start Recommender System of New Users Based on Seed-set Rating in the Collaborative Filtering System
Received date: 2012-11-20
Revised date: 2013-02-19
Online published: 2013-03-05
This paper believes that building a seed set to guide users’ evaluation is one of the solutions to resolve the cold start problem of new users. An integrated approach based on multiple-attribute comprehensive assessment is brought up by bringing the relevance into the construction strategy of seed set. User environment of the recommender system is simulated through the experiment designed according to public data sets, in order to compare the accuracy and success rate of forecast. The result shows that the recommender effectiveness is improved by considering the relevance of seeds, if a small amount of seeds sets which are more suitable to the real recommendation system are adopted.
Jing Minchang , Zhang Qin , Tang Diguan . Research on the Cold Start Recommender System of New Users Based on Seed-set Rating in the Collaborative Filtering System[J]. Library and Information Service, 2013 , 57(05) : 124 -128 . DOI: 10.7536/j.issn.0252-3116.2013.05.022
[1] Koren Y, Bell R. Advances in collaborative filtering[EB/OL]. [2011-09-26]. http://research.yahoo.com/pub/3503.
[2] 许海玲,吴潇,李晓东,等. 互联网推荐系统比较研究[J]. 软件学报,2009,20(2):350-362.
[3] 奉国和,梁晓婷. 协同过滤推荐研究综述[J].图书情报工作,2011,55 (16): 126-130.
[4] 孙小华. 协同过滤系统的稀疏性与冷启动问题研究[D]. 杭州:浙江大学,2005.
[5] 李聪. 电子商务推荐系统中协同过滤瓶颈问题研究[D]. 合肥:合肥工业大学,2009.
[6] Hu Rong, Pearl P. A comparative user study on rating vs. personality quiz based preference elicitation methods[C]//Proceedings of the 14th International Conference on Intelligent User Interfaces (IUI). New York: ACM Press,2009:367-372.
[7] Movielens[EB/OL].[2012-09-05]. http://www.movielens.org.
[8] Netflix[EB/OL]. [2012-09-05]. http://www.netflix.org.
[9] Whattorent[EB/OL].[2012-09-05]. http://whattorent.com/.
[10] Rashid A M, Albert I, Cosley D, et al. Getting to know you: Learning new user preferences in recommender systems[C]//Proceedings of the 7th International Conference on Intelligent User Interfaces (IUI). New York:ACM Press, 2002: 127-134.
[11] Rashid A M, Karypis G, Riedl J. Learning preferences of new users in recommender systems: An information theoretic approach [J].SIGKDD Explorations, 2008, 10(2):90-100.
[12] Elahi M, Repsys V, Ricci F. Rating elicitation strategies for collaborative filtering [C]//Proceedings of the 12th International Conference. Toulouse:Springer, 2011:160-171.
[13] 史忠植. 知识发现[M]. 2版. 北京:清华大学出版社,2011:30-31.
[14] Golbandi N, Koren Y, Lempel R. On bootstrapping recommender systems[C]//Proceedings of the 19th ACM International Conference on Information and Knowledge Management. New York: ACM Press, 2010:1805-1808.
[15] Golbandi N, Koren Y, Lempel R. Adaptive bootstrapping of recommender systems using decision trees[C]//Proceedings of the 4th ACM International Conference on Web Search and Data Mining. New York:ACM Press, 2011:595-604.
[16] 朱强. 中文核心期刊要目总览[M].北京:北京大学出版社,2008:1-11.
[17] GroupLens Research. MovieLens data sets[EB/OL]. [2011-10-15]. http://www.grouplens.org/node/73.
[18] Lemire D, Maclachlan A. Slope one predictors for online rating-based collaborative filtering[C]//Proceedings of the 5th International Conference on Data Mining.Newport Beach, CA:SLAM, 2005:471-475.
[19] Apache. What is Apache Mahout? [EB/OL]. [2011-10-15]. http://mahout.apache.org.
/
〈 | 〉 |