Library and Information Service >
2013 >Issue 07: 112 - 115
Comparative Research on Network Multimedia Topic Search Algorithms
Received date: 2013-01-04
Revised date: 2013-03-13
Online published: 2013-04-05
Based on the distribution characteristics of the multi-media resources in web pages, the relevant parameters of the two typical search algorithms of PageRank and Shark-Search have been improved, which compute the similarity of the multi-media resources and the subject in the ways of webpage content and web hyperlink. The results show that the improved Shark-Search of the multimedia search algorithm is more effective to improve the efficiency of multi-media topic search, and more suitable for topic search of multimedia network resources than that of PageRank algorithm.
Key words: multimedia; topic search; topic searching algorithm; web spider
Wu Yuping , Yang Renguang . Comparative Research on Network Multimedia Topic Search Algorithms[J]. Library and Information Service, 2013 , (07) : 112 -115 . DOI: 10.7536/j.issn.0252-3116.2013.07.020
[1] Aggarwal C, AL-Garawi F, Yu P. Intelligent crawling on the World Wide Web with arbitrary predicates[C]//Proceedings of the 10th International WWW Conference.New York:ACM,2001.
[2] Menczer F.Complementing search engines with online Web mining agents[J].Decision Support Systems,2003,35(2):195-212.
[3] De Bra P, Houben G, Kornatzky Y, et al. Information retrieval in distributed hypertexts[C]//Processings of the 4th RIAO Conference, New York,1994:481-491.
[4] Cho J,Garcia-MolinaH,Page L.Efficient crawling through URL ordering[J].Computer Networks,1998,30(1-7):161-172.
[5] Rennie J, MeCallum A. Using reinforcement learning to spider the Web efficiently [C]//Proceedings of the International Conference on Machine Learning (ICML99).San Francisco: Morgan Kaufmann Publishers Inc., 1999: 335-343.
[6] Diligenti M,Coetzee F M,Lawrence S, et al,Focused carwling using context graphs[C]Proceedings of the International Conference on Very Large Database (VLDB '00),2000:527-534.
[7] 杨仁广,宋宇,孟祥增.一种改进Shark-Search的多媒体主题搜索算法[J].计算机工程与应用,2010(14):152-154.
[8] 苏祺,项锟,孙斌.基于链接聚类的Shark-Search算法[J].山东大学学报(理学版),2006,41(3):1-4.
[9] 陈骏,陈竹敏.基于网页分块的Shark-Search算法[J].山东大学学报(理学版),2007,42(9):62-66.
[10] 杨仁广,孟祥增.一种基于网页内容和链接分析的主题搜索算法[J].情报杂志,2008(6):64-66.
/
〈 | 〉 |