Empirical Research on Network Comprehensive Evaluation of Academic Influence of Sci-tech Papers

  • Shen Xiaoling ,
  • Xu Yong ,
  • Yan Weizhong
Expand
  • 1. Library of Anhui University of Finance & Economics, Bengbu 233030;
    2. School of Management Science & Engineering, Anhui University of Finance & Economics, Bengbu 233030;
    3. Machine Learning Lab GE Global Research Center Niskayuna, New York 12065

Received date: 2013-09-18

  Revised date: 2013-10-15

  Online published: 2013-11-05

Abstract

Based on both the citation evaluation and the peer review methods of paper evaluation, using F1000 database randomly, this article gets 131 peer review indicators papers. By using WOS, JCR, ESI and the ImpactStory retrieved tools, this paper gets the common network measurement indicators of each article. Then it explored the indicators involved with peer evaluation, and formed academic influence integrated evaluation model without the process of peer review. The results show that integrated evaluation can make up the defects of single indicator evaluation. The actual relative indicators used in the evaluation and standardization of measurement, eliminated the different influence factors in various subject areas and the number of periodicals to enable interdisciplinary evaluation comparability across time. Through the analysis of similarities and correlations among indicators, it is possible to simplify, substitute or expand indicators. By adjusting the weights, highlighting the role of peer review in evaluation model, this model has a good maneuverability.

Cite this article

Shen Xiaoling , Xu Yong , Yan Weizhong . Empirical Research on Network Comprehensive Evaluation of Academic Influence of Sci-tech Papers[J]. Library and Information Service, 2013 , 57(21) : 95 -103 . DOI: 10.7536/j.issn.0252-3116.2013.21.017

References

[1] Coupe T. Peer review versus citations-An analysis of best paper prizes[J].Research Policy, 2013, 42(1): 295-301.
[2] Waltman L, van Eck N J, van Leeuwen T N, et al. On the correlation between bibliometric indicators and peer review: Reply to Opthof and Leydesdorff[J]. Scientometrics, 2011, 88(3): 1017-1022.
[3] 郭红梅, 何苗, 邢星, 等.不同自然科学门类间论文学术影响力多指标综合评价的合理性研究[J].图书情报工作, 2012, 56(22):62-68.
[4] 邱均平, 马瑞敏, 程妮. 利用SCI进行科研工作者成果评价的新探索[J]. 中国图书馆学报, 2007, 29(4):11-16.
[5] 宋丽萍, 王建芳. 基于F1000与WoS的同行评议与文献计量相关性研究[J]. 中国图书馆学报, 2012, 34(2):62-69.
[6] 曹兴, 周密, 刘芳. 网络科技论文学术影响力评价指标体系研究[J]. 科学决策, 2010(7):30-37, 52.
[7] Bornmann L, Leydesdorff L. The validation of (advanced) bibliometric indicators through peer assessments: A comparative study using data from InCites and F1000[J]. Journal of Informetrics, 2013, 7(2): 286-291.
[8] 李冲. 引文分析的本质与学术评价功能的条件性[J].科学学研究, 2013(8):1121-1127.
[9] 沈小玲, 严卫中.网络科技论文学术影响力评价指标的选择[J].图书情报工作, 2013, 57(3):69-77.
[10] Radicchi F, Fortunato S, Castellano C. Universality of citation distributions: Toward an objective measure of scientific impact[J]. Proceedings of the National Academy of Sciences, 2008, 105(45): 17268-17272.
[11] 张立军, 袁能文.线性综合评价模型中指标标准化方法的比较与选择[J].统计与信息论坛, 2010(8):10-15.
[12] 郭晓晶, 何倩, 张冬梅, 等. 综合运用主客观方法确定科技评价指标权重[J]. 科技管理研究, 2012(20): 64-67, 71.

Outlines

/