Research of Identification and Classification of Emergencies Key Nodes Based on BBS

  • Cao Xueyan ,
  • Duan Feifei ,
  • Fang Kuan ,
  • Zhang Xian ,
  • Li Shiming
Expand
  • 1. Library of University of Electronic Science and Technology of China, Chengdu 611731;
    2. School of Political Science and Public Administration, University of Electronic Science and Technology of China, Chengdu 611731;
    3. School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731;
    4. Department of Retired Work, University of Electronic Science and Technology of China, Chengdu 611731;
    5. School of Management and Economics, University of Electronic Science and Technology of China, Chengdu 611731

Received date: 2013-12-26

  Revised date: 2014-02-01

  Online published: 2014-02-20

Abstract

In the information spread process of emergencies, the powerful key nodes in BBS often decide the spread trend of Internet public opinion.This paper designed a technical method which integrating data mining, data structure, node measuring and recognition, key nodes influence calculation, key node classification etc., involving the algorithm and software such as GooSeeker, Gephi, LeaderRank, taking the 723 train accident as the example.It revealed the characteristics of network public opinion including the complexity of structure, scale-free and community structure etc.,and got two kinds of key nodes as "web celebrities" and "event focus".This has the reference value to the network public opinion response.

Cite this article

Cao Xueyan , Duan Feifei , Fang Kuan , Zhang Xian , Li Shiming . Research of Identification and Classification of Emergencies Key Nodes Based on BBS[J]. Library and Information Service, 2014 , 58(04) : 65 -70 . DOI: 10.13266/j.issn.0252-3116.2014.04.011

References

[1] 谢新洲.网络舆情的形成、发展与预测研究 序[J].图书情报工作, 2013, 56(15):12.
[2] 刘军.整体网分析讲义[M].上海: 上海人民出版社, 2009.
[3] 庞科, 陈京民.社会网络结构洞在网络参政领袖分析中的应用[J].武汉理工大学学报(信息与管理工程版), 2011(1): 86-89.
[4] Watts D J, Dodds P S.Influentials, networks, and public opinion formation[J].Journal of Consumer Research, 2007, 34(4): 441-458.
[5] 周涛, 汪秉宏, , 韩筱璞, 等.社会网络分析及其在舆情和疫情防控中的应用[J].系统工程学报, 2010, 25(6):742-754.
[6] 汪小帆, 李翔, 陈关荣.复杂网络理论及其应用[M].北京: 清华大学出版社, 2006.
[7] Watts D J, Strogatz S H.Collective dynamics of small world network[J].Nature, 1998, 393(6684): 440-442.
[8] Barabasi A L, Albert R.Emergence of scaling in random network[J].Science, 1999, 286 (5439): 509-512.
[9] Carlson J, Doyle J.Highly optimized tolerance:Robustness and power laws in complex system[J].Physical Review Letters, 2000, 84(11):2529-2532.
[10] Carlson J, Doyle J.Complexity and robustness[J].Proceedings of the National Academy of Science of the United States of America, 2002, 99(S1):2539-2545.
[11] 2012年中国网络陆君安网络科学论坛报告[OL].[2013-10-27]. http://wenku.baidu.com/view/cdbea01afad6195f312ba6 4a.html.
[12] Albert R, Jeong H, Barabasi A L.Error and attack tolerance of complex networks[J].Nature, 2000, 406(6794):378-482.
[13] Miorandi D, Pellegrini F.D.K-shell decomposition for dynamic complex networks[C]//Proceedings of the 8th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt).Piscataway:IEEE, 2010: 488-496.
[14] 周漩, 张凤鸣, 李克武, 等.利用重要度评价矩阵确定复杂网络关键节点[J].物理学报, 2012, 61(5):1-5.
[15] 刘茂立, 邓忠良.基于选择关键节点的网络易损性评估法[J].舰船电子工程, 2011(1): 113-115, 152.
[16] Lü Linyuan, Zhang Yicheng, Yeung C H.H.et al.Leaders in social networks, the delicious case[J].PLoS ONE, 2011, 6(6):e21202.
[17] 康伟.基于SNA 的突发事件网络舆情关键节点识别——以"7·23动车事故"为例[J].公共管理学报, 2012, 9(3):101-111.

Outlines

/