Library and Information Service >
Two-level MicroBlog Friend Recommendation Based on Topic Model
Received date: 2014-04-08
Revised date: 2014-04-20
Online published: 2014-05-05
With users' explosive growth in the social network, it is more and more difficult for them to find potential friends of similar interests. In order to effectively solve the above problem, this paper proposes to recommend like-minded friends for social network users respectively from two dimensions of social relations and contents based on the theories of Homogeneity and Triadic closure. The paper models interested topics for Sina MicroBlog users by using extended LDA model-UserLDA, and calculates the users' similarity through user-topic probability distribution matrix, to recommend TopN two-level friend. Through the experiments on real weibo corpus, the result shows that the recommendation algorithm has better accuracy and diversity.
Key words: UserLDA; two-level friends; TF-IDF; JS distance; Sina MicroBlog
Tang Xiaobo , Zhu Li , Xie Li . Two-level MicroBlog Friend Recommendation Based on Topic Model[J]. Library and Information Service, 2014 , 58(09) : 105 -113 . DOI: 10.13266/j.issn.0252-3116.2014.09.015
[1] 赵岩露, 王晶, 沈奇威. 基于特征分析的微博用户兴趣发现算法[J]. 电信工程技术与标准化, 2012, 25(11): 79-83.
[2] 张中峰, 李秋丹. 社交网站中潜在好友推荐模型研究[J]. 情报学报, 2011, 30(12): 1319-1325.
[3] Yang Shuanghong, Long Bo, Smola A,et al. Like like alike: Joint friendship and interest propagation in social networks[C]//Proceedings of the 20th International Conference on World Wide Web. New York: ACM, 2011.
[4] Naruchitparames J, Gunes M H, Louis S J. Friend recommendations in social networks using genetic algorithms and network topology[C]//Evolutionary Computation (CEC), 2011 IEEE Congress on. New Orleans: IEEE,2011.
[5] Chechev M, Georgiev P. A multi-view content-based user recommendation scheme for following users in Twitter[C]//4th International Conference, SocInfo 2012. Berlin: Springer Berlin Heidelberg, 2012.
[6] Weng Jianshu, Lim E P, Jiang Jing, et al. Twitterrank: Finding topic-Sensitive influential Twitterers[C]//Proceedings of the third ACM international conference on Web search and data mining. New York: ACM,2010.
[7] Chen Jilin, Nairn R, Nelson L, et al. Short and tweet: Experiments on recommending content from information streams[C]//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. New York: ACM, 2010.
[8] Rosen-Zvi M, Griffiths T, Steyvers M, et al. The author-topic model for authors and documents[C]//Proceedings of the 20th conference on Uncertainty in artificial intelligence. Virginia: AUAI Press Arlington,2004.
[9] Hannon J, McCarthy K, Smyth B. Content vs. tags for friend recommendation[M]//Research and Development in Intelligent Systems XXIX. Springer London, 2012: 289-302.
[10] Hannon J, Bennett M, Smyth B. Recommending twitter users to follow using content and collaborative filtering approaches[C]//Proceedings of the fourth ACM conference on Recommender systems. New York: ACM,2011.
[11] 胡文江, 胡大伟, 高永兵, 等. 基于关联规则与标签的好友推荐算法[J]. 计算机工程与科学, 2013, 35(2): 109-113.
[12] Xie Xing. Potential friend recommendation in online social network[C]//Green Computing and Communications (GreenCom), 2010 IEEE/ACM Int'l Conference on & Int'l Conference on Cyber, Physical and Social Computing (CPSCom). New York :IEEE, 2010.
[13] Triadic closure [EB/OL].[2013-10-17].http://en.wikipedia.org/wiki/Triadic_closure.
[14] 于海群, 刘万军, 邱云飞. 基于用户话题偏好的社会网络二级人脉推荐[J]. 计算机应用, 2012, 32(5): 1366-1370.
[15] Blei D M, Ng A Y, Jordan M I. Latent dirichlet allocation[J]. The Journal of machine Learning research, 2003(3): 993-1022.
[16] Steyvers M, Griffiths T. Probabilistic topic models[J]. Handbook of Latent Semantic Analysis, 2007, 427(7): 424-440.
[17] 陈文涛, 张小明, 李舟军. 构建微博用户兴趣模型的主题模型的分析[J]. 计算机科学, 2013, 40(4): 127-130.
[18] Kirby G. Zipf'slaw[J]. UK Journal of Naval Science, 1985, 10(3): 180-185.
[19] 黄承慧, 印鉴, 侯昉. 一种结合词项语义信息和TF-IDF方法的文本相似度量方法[J]. 计算机学报, 2011, 34(5): 856-864.
[20] 唐晓波, 宋承伟. 基于复杂网络的微博舆情分析[J]. 情报学报, 2012, 31(11): 1153-1162.
[21] Zhang Huaping, Yu Hongkui, Xiong Deyi, et al. HHMM-based Chinese lexical analyzer ICTCLAS[C]//SIGHAN '03 Proceedings of the second SIGHAN workshop on Chinese language processing. Stroudsburg: ACM,2003.
[22] Heinrich G. Parameter estimation for text analysis[J/OL].[ 2013-10-17].http://faculty.cs.byu.edu/~ringger/CS601R/papers/Heinrich-GibbsLDA.pdf.
[23] Duda R O, Hart P E, Stork D G. Pattern classification[M]//New York:John Wiley & Sons, 2012.
[24] 朱郁筱, 吕琳媛. 推荐系统评价指标综述[J]. 电子科技大学学报, 2012, 41(2): 163-175.
/
〈 | 〉 |