Technologies and Applications of Literature Co-occurrence Network Based on Characteristic Terms in Academic Information Retrieval

  • Ding Jie ,
  • Wang Yuefen
Expand
  • School of Economics and Management, Nanjing University of Science & Technology, Nanjing 210094

Received date: 2014-05-19

  Revised date: 2014-07-06

  Online published: 2014-08-05

Abstract

After analyzing the present situation of the domestic academic information retrieval services and research status at home and abroad, a digital academic information query suggestion recommendation model based on co-occurrence analysis was developed, which includes the basic literatures storage module, the literatures feature item extraction module, the literatures feature co-occurrence network preprocessing module, the literature search module based on feature item and the front-end of search term services. An experiment was done to verify the model. The research showed that the academic information query suggestion recommendation model based on co-occurrence analysis of literature characteristic terms achieved better recommendation quality.

Cite this article

Ding Jie , Wang Yuefen . Technologies and Applications of Literature Co-occurrence Network Based on Characteristic Terms in Academic Information Retrieval[J]. Library and Information Service, 2014 , 58(15) : 135 -141 . DOI: 10.13266/j.issn.0252-3116.2014.15.020

References

[1] 张铧予,李广建.基于文献的语义资源库建设及其在NSTL中的应用[J].图书情报工作,2012,56(9):18-23.

[2] 边鹏,苏玉召.基于检索日志的检索词推荐研究[J].图书情报工作,2012,56(9):31-36,41.

[3] 于娟,尹积栋,费庶.基于句法结构分析的同义词识别方法研究[J].现代图书情报技术,2013,29(9):35-40.

[4] 陆勇,侯汉清.基于模式匹配的汉语同义词自动识别[J].情报学报,2006,25(6):720-724.

[5] Yang Xu,Gareth J F J,Wang Bin.Query dependent pseudo-relevance feedback based on wikipedia[C]//Proceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval.NewYork:ACM,2009:59-66.

[6] 汪英姿.基于本体的个性化图书推荐方法研究[J].现代图书情报技术,2012,(12):72-78.

[7] 唐晓玲.基于本体和协同过滤技术的推荐系统研究[J].情报科学,2013,31(12):90-94.

[8] 黄媛.基于论文主题词和关键词关系网的检索词拓展研究[J].科技广场,2011,(1):24-27.

[9] 陆伟,张晓娟.基于主题与用户偏好分析的查询推荐研究[J].情报学报,2012,31(12):1252-1258.

[10] Ji Shihao, Zhou Ke, Liao Ciya,et al.Global ranking by exploiting user clicks[C]//Proceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval.New York:ACM,2009:35-42.

[11] Sanjeev R,Priyanka G.Implementing improved algorithm over APRIORI daata mining association rule algorithm[J].International Journal of Computer Science and Techology,2012,3(1):489-493.

[12] Komal K,Simple S.Analysis of association rules mining algorithms[J].International Journal of Scientific and Research Publications, 2013,3(5):1-4.

[13] 刘旭东,葛俊杰.基于关联规则的个性化推荐在数字图书馆中的应用研究[J].德州学院学报,2010,26(2):72-75.

[14] 边鹏,赵妍,苏玉召.一种适合检索词推荐的K-means 算法最佳聚类数确定方法[J].图书情报工作,2012,56(4):107-111.

[15] 奉国和.协同过滤推荐研究综述[J].图书情报工作,2011,55(16):126-130.

[16] 曹艺.面向学术影响力评价的网络学术交流中文献的下载与引用研究[D].南京:南京理工大学,2012.

[17] 许文海,温有奎.一种基于TFIDF方法的中文关键词抽取算法[J].情报理论与实践,2008(2):298-302.

[18] 基于知网的词汇语义相似度计算方法研究[J].计算机应用研究,2010,27(9): 3329-3333.

[19] 邱均平.信息计量学[M].武汉:武汉大学出版社,2007:132-152.

[20] Hsinchun C,Andrea L H,Robin R S.Internet browsing and searching:User evaluations of category map and concept space techniques[J].Journal of the American Society for Information Science,1998,49(7):582-603.

Outlines

/