Empirical Research on Similarity of Research Interests in Co-authorship Network

  • Li Gang ,
  • Li Lanfeng ,
  • Mao Jin ,
  • Ye Guanghui
Expand
  • Center for the Studies of Information Resources, Wuhan University, Wuhan 430072

Received date: 2014-07-16

  Revised date: 2015-01-02

  Online published: 2015-01-20

Abstract

[Purpose/significance] Aiming at quantitatively verifying the assumption that the similarity of research interests is a motivation of the co-authoring, this paper uses the keyword set of those authors of the co-authorship network from the micro perspective of individual.[Method/process] The research collects bibliographic record of document about information retrieval, constructs co-authorship network, divides the communities with Louvain algorithm, implements Jaccard coefficient and Cosine coefficient computation indicators, and carries out a statistical analysis and comparison on the similarity of research interests of authors in the overall network and within the community.[Result/conclusion] From the perspective of overall network, the similarity of research interest is higher in co-authorship network, but there is a rate of complementarity. Both the average similarity and complementarity of co-author within community are higher than overall network, and the formation of scientific community may be influenced by the research interest of author. That the similarity of research interest is an important motivation of the co-authoring can be reflected by the similarity of researcher's interest in these two levels of network.

Cite this article

Li Gang , Li Lanfeng , Mao Jin , Ye Guanghui . Empirical Research on Similarity of Research Interests in Co-authorship Network[J]. Library and Information Service, 2015 , 59(2) : 75 -81 . DOI: 10.13266/j.issn.0252-3116.2015.02.012

References

[1] 王福生,石秀春,杨洪勇. 基于作者簇的科研合作网络模型[J].情报理论与实践,2009(1):35-37.
[2] 李爱明. 社会网络视角下的国内数字图书馆领域作者合作关系研究[J].情报科学,2013,31(11):57-63.
[3] Abramo G, D'Angelo C A, Costa F. Identifying interdisciplinary through the disciplinary classification of coauthors of scientific publications[J].Journal of the American Society for Information Science and Technology, 2012,63(11):2206-2222.
[4] Hoekman J, Frenken K, van Oort F. The geography of collaborative knowledge production in Europe[J].The Annals of Regional Science,2009,43(3):721-738.
[5] Adams J, Jackson L, Marshall S. Bibliometric analysis of interdisciplinary research[EB/OL].[2014-06-20]. https://www.sheffield.ac.uk/content/1/c6/07/17/20/Evidence%20report%20on%20interdisciplinarity%20rd19_07.doc.
[6] Abramo G, D'Angelo C A, Di Costa F. Research collaboration and productivity:Is there correlation?[J].Higher Education,2009,57(2):155-171.
[7] Archibugi D, Coco A. International partnerships for knowledge in business and academia:A comparison between Europe and the USA[J].Technovation,2004,24(7):517-528.
[8] 史庆伟,李艳妮,郭朋亮.科技文献中作者研究兴趣动态发现[J].计算机应用,2013(11):3080-3083.
[9] 沈耕宇,黄水清,王东波.以作者合作共现为源数据的科研团队发掘方法研究[J].现代图书情报技术, 2013(1):57-62.
[10] 张玮茗.基于内容与结构的论文作者分析[D].上海:华东师范大学, 2012.
[11] Small H. Co-citation in the Scientific Literature: A new measure of the relationship between two documents[J].Journal of the American Society for Information Science,1973,24(4):265-269.
[12] Zhao Dangzhi,Strotmann A.Evolution of research activities and intellectual influences in information science 1996-2005: Introducing author bibliographic-coupling analysis[J].Journal of the American Society for Information Science and Technology,2008,59(13):2070-2086.
[13] 刘萍, 郭月培, 郭怡婷. 利用作者关键词网络探测作者相似性[J].现代图书情报技术,2013(12):62-69.
[14] 刘志辉,张志强.作者关键词耦合分析方法及实证研究[J].情报学报,2010,29(2):268-275.
[15] 陈卫静,郑颖.基于作者关键词耦合的潜在合作关系挖掘[J].情报杂志,2013,32(5):127-131.
[16] 刘志辉, 郑彦宁. 基于作者关键词耦合分析的研究专业识别方法研究[J].情报学报,2013, 32(8):788-796.
[17] 刘萍, 王哲. 一种探测组织知识结构的新方法:基于FCA的作者关键词耦合分析[J].图书情报工作,2012, 56(22):121-128.
[18] 孙海生. 作者关键词共现网络及实证研究[J].情报杂志,2012,31(9):63-67.
[19] 苗蕊, 刘鲁. 科学家合作网络中的社区发现[J].情报学报,2012,30(12):1312-1318.
[20] 黄宇. 基于隐性语义挖掘的社区划分算法[D].成都:电子科技大学,2013.
[21] 程齐凯, 王晓光. 一种基于共词网络社区的科研主题演化分析框架[J]. 图书情报工作, 2013, 57(8): 91-96.
[22] 武森, 卢丹, 冯小东,等. 基于大规模复杂网络社区发现的科研合著网络分析[J].中国科技论文, 2014(4):474-478.
[23] 李纲, 叶光辉. 基于模糊匹配的跨学科专家团队发现算法研究[J].情报学报, 2014(1):68-76.
[24] 韩瑞凯, 孟嗣仪, 刘云. 基于兴趣相似度的社区结构发现算法研究[J].铁路计算机应用, 2010(10): 10-14.
[25] Newman M E J. Modularity and community structure in networks[J]. Proceedings of the National Academy of Sciences, 2006, 103(23): 8577-8582.
[26] 吴祖峰, 王鹏飞, 秦志光,等. 改进的Louvain社团划分算法[J].电子科技大学学报,2013,42(1):105-108.
[27] yanweirong456. Jaccard系数[EB/OL]. [2014-07-10]. http://baike.baidu.com/view/9579150.htm?fromTaglist.
[28] 维基百科.余弦相似性[EB/OL]. [2014-07-10]. http://zh.wikipedia.org/wiki/%E4%BD%99%E5%BC%A6%E7%9B%B8%E4%BC%BC%E6%80%A7.
[29] Ding Ying.Scientific collaboration and endorsement: Network analysis of coauthor-ship and citation networks[J].Journal of Informetrics,2011,5(1):187-203.
[30] 林聚任.社会网络分析:理论、方法与应用[M].北京:北京师范大学出版社,2009:41,132.
[31] Clauset A, Newman M E J, Moore C. Finding community structure in very large networks[J]. Physical Review E, 2004, 70(6): 066111.

Outlines

/