Library and Information Service >
Comprehensive Information Acquisition and Utilization Based on Natural Language Understanding in Knowledge Architecture
Received date: 2015-02-05
Revised date: 2015-03-02
Online published: 2015-03-20
[Purpose/significance] Comprehensive Information (CI) can describe the form, content and value of things through natural language. In order to effectively acquire and comprehensively utilize CI in knowledge architecture (KA), so that it can provide the guarantee of explicit and tacit intelligent formation and the power of its growth for users' knowing and doing ability, and set up the harmonious knowledge ecological system structure of capacity formation for KA.[Method/process] According to CI's formation mechanism and synthetic action in user intellectual activities, KA takes the strategy "people as host and machine as assistance" and "knowing and doing cooperation" based on Web 2.0 to synthetically use the rule-based approach and statistical approach to understand natural language deeply, and then adopts the method of integrated intelligence system based on Internet of things to recognize different word categories and mine their associations.[Result/conclusion] Aiming at the congenital deficient of semantic Web in CI representation, knowledge extraction and intelligent activation, KA can acquire CI by its analysis, extraction and expression based on natural language processing, and can synthetically utilize CI by constructing CI-Web based on fusing organically the swarm intelligence of Web 2.0 and the meta-synthesis of Internet of things.
Jiang Yongchang , Jin Yan . Comprehensive Information Acquisition and Utilization Based on Natural Language Understanding in Knowledge Architecture[J]. Library and Information Service, 2015 , 59(6) : 104 -112 . DOI: 10.13266/j.issn.0252-3116.2015.06.016
[1] 钟义信.高等人工智能:人工智能理论的新阶段[J].计算机教育,2012(18):6-11.
[2] 钟义信. 信息科学原理[M].5版.北京:北京邮电大学出版社,2013:141-313.
[3] Agrawal R, Imielinski T, Swami A. Database mining:A performance perspective[J]. IEEE Trans on Knowledge and Data Engineering, 1993, 5(6): 914-925.
[4] 姜永常.知识构建成长的动力需求与能力生成[J].情报理论与实践, 2014, 37 (4): 11-15.
[5] 姜永常.基于用户体验的知识构建——Web2.0环境下知识构建原理的再认识[J].情报学报,2010,29(5):872-879.
[6] 浦江.全信息情感理论——一种认知情感交互机理的假说[J].智能系统学报,2013,8(2):105-112.
[7] 姜永常.基于知识转化机制的知识构建研究科学方法论[J].情报理论与实践, 2015, 38 (4): 11-17.
[8] 钟义信.理解论:信息内容认知机理的假说[J].北京邮电大学学报,2008, 31(3):1-8.
[9] 浦江.基于全信息理论的认知模型研究[J].徐州工程学院学报(自然科学版),2012,27(4):49-54.
[10] 钟义信. 信息转换原理:信息、知识、智能的一体化理论[J].科学通报,2013, 58(14): 1300-1306.
[11] 姜永常.基于知识构建的知识服务实现机理研究[J].情报资料工作,2011(2):76-81.
[12] 钟义信. 自然语言理解的全信息方法论[J].北京邮电大学学报,2004, 27(4): 1-12.
[13] 郭燕慧,刘建毅,姚均勇.基于全信息自然语言理解的文本过滤和倾向识别[EB/OL].[2014-12-28].http://d.g.wanfangdata.com. cn/Conference_6737686.aspx.
[14] Ram A. Natural language understanding for information-filtering systems[J]. Image and Vision Computing, 2012, 30(8): 474–475.
[15] 钟义信. 机器知行学原理:信息、知识、智能的转换与统一理论[M].北京:科学出版社,2007: 259-284.
[16] 温有奎,张卓奎,焦玉英. 知识信息谱的分析与提取[J].情报学报,2008, 27(5): 677-682.
[17] 朝乐门. 大规模人机协同知识处理模式研究[J].中国图书馆学报,2011, 37(5): 101-114.
[18] Petrou M. The road to intelligence[J]. Image and Vision Computing, 2012, 30(8): 474-475.
[19] Hermansen J, Loatman R, Post S,et al. Natural language understanding system[EB/OL].[2015-03-02].http://www.gfsoso.com/scholar?cluster=6031674286550383547&hl=zh-CN&as_sdt=0,5.
/
〈 | 〉 |