The Model of Personalized Information Retrieval Recommendation Based on LDA and Social Network Centrality Analysis

  • Ye Chunlei ,
  • Xing Yanli
Expand
  • Library of Beijing University of Agriculture, Beijing 102206

Received date: 2015-05-17

  Revised date: 2015-06-20

  Online published: 2015-07-05

Abstract

[Purpose/significance] In order to solve the retrieval problem of postgraduates, this paper proposes a personalized retrieval recommendation model based on LDA and the social network centrality analysis. [Method/process] Firstly, this model takes the discipline and specialty of postgraduate as the personalized characteristics, and selects the relevant literature data source according it. Secondly, this model uses the LDA to identify the topic content, and completes the display of the comprehensive knowledge. Thirdly, this model takes the social network centrality analysis in the keyword-topic co-occurrence network according to the retrieval word, and completes the relevant knowledge recommendation. [Result/conclusion] Experimental results show that this model can solve the three retrieval problems of postgraduates, such as the personalized features, the comprehensive knowledge display and the relevant knowledge recommendation. Its validity is verified to some extent.

Cite this article

Ye Chunlei , Xing Yanli . The Model of Personalized Information Retrieval Recommendation Based on LDA and Social Network Centrality Analysis[J]. Library and Information Service, 2015 , 59(13) : 104 -110 . DOI: 10.13266/j.issn.0252-3116.2015.13.015

References

[1] 范秀凤,刘禺卿,王琏嘉.基于学科服务的高校研究生专业信息素养教育[J].图书馆理论与实践,2010(11):84-87.
[2] 张群,彭奇志.研究生信息素质教育与高校图书馆学科化知识服务[J].图书馆工作与研究,2011(2):53-56.
[3] 李广建.专题:提供个性化与人性化的信息检索服务(序)[J]. 图书情报工作,2012,56(9):10.
[4] 边鹏,苏玉召. 基于检索日志的检索词推荐研究[J].图书情报工作,2012,56(9):31-36.
[5] 古可,李广建. 一种个性化信息检索服务界面的设计与实现[J].图书情报工作,2012,56(9):37-41.
[6] 李芳,杨林.基于用户的检索服务研究进展[J].情报科学,2012(9):1424-1430.
[7] 王伟军,宋梅青.一种面向用户偏好定向挖掘的协同过滤个性化推荐算法[J].现代图书情报技术,2014(6):25-32.
[8] 陈祖琴,葛继科,刘喜文.结合资源语义和用户访问路径分析的个性化推荐模型[J].情报理论与实践,2014(9):129-132.
[9] 唐晓玲,何天云.基于主题偏好的个性化检索模型研究[J].情报杂志,2011(4):133-136.
[10] Wei Xing,Croft W B.LDA-based document models for Ad-hoc retrieval[C]//Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.New York:ACM,2006:178-185.
[11] Ma Dashun,Rao Lan,Wang Ting.An empirical study of SLDA for information retrieval[C]//Proceeding of the 7th Asia Information Retrieval Societies Conference,Berlin : Springer, 2011: 84-92.
[12] Lukins S K,Kraft N A,Etzkorn L H.Source code retrieval for bug localization using Latent Dirichlet Allocation[C]//Proceedings of the 15th Working Conference on Reverse Engineering.Los Angeles:IEEE,2008,155-164.
[13] Park L A F,Ramamohanarao K.The sensitivity of Latent Dirichlet Allocation for information retrieval[C] //Proceedings of the Joint European Conference on Machine Learning (ECML)/European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD).Berlin:Sprmger,2009:176-188.
[14] 房小可,纪春光.基于标签主题和概念空间的个性化推荐研究[J].情报理论与实践,2015(5):105-111.
[15] 唐晓波,房小可.基于文本聚类与LDA相融合的微博主题检索模型研究[J].情报理论与实践,2013(8):85-90.
[16] 罗琳,陈远.知识挖掘与数字图书馆个性化服务[J].中国图书馆学报,2004(3):71-73.
[17] Coulter N,Monarch I,Konda S.Software engineering as seen through its research literature: A study in co-word analysis[J].Journal of the American Society for Information Science,1998,49(13):1206-1223.
[18] Tian Yangge,Wen Cheng,Hong Song.Global scientific production on GIS research by bibliometric analysis from 1997 to 2006[J].Journal of Informetrics,2008(2):65-74.
[19] 刘则渊,尹丽春.国际科学学主题共词网络的可视化研究[J].情报学报,2006,25(5):634-640.
[20] 王晓光.科学知识网络的形成与演化(I):共词网络方法的提出[J].情报学报,2009,28(4):599-605.
[21] Small H G,Griffith B C.The structure of scientific literatures I: Identifying and graphing specialties [J].Science Studies,1974(4):17-40.
[22] Small H,Sweeney E.Clustering the science citation index using co-citation. 1. A comparison of methods[J].Scientometrics,1985,7(3-6):391-409.
[23] Blei D M,Ng A Y,Jordan M I.Latent Dirichlet Allocation[J].Journal of Machine Learning Research,2003(3):993-1022.
[24] 茆诗松,王静龙,濮晓龙.高等数理统计[M].北京:高等教育出版社,2006:450-454.
[25] Griffiths T L,Steyvers M.Finding scientific topics[C]//Proceedings of the National Academy of Sciences of the United States of America.Washington:NATL ACAD,2004:5228-5235.
[26] 王金龙,徐从富,耿雪玉.基于概率图模型的科研文献主题演化研究[J].情报学报,2009,28(3):347-355.
[27] 石晶,李万龙.基于LDA模型的主题词抽取方法[J].计算机工程,2010,36(19):81-83.
[28] 崔凯,周斌,贾焰,等.一种基于LDA的在线主题演化挖掘模型[J].计算机科学,2010(11):156-159.
[29] 胡吉明,陈果.基于动态LDA主题模型的内容主题挖掘与演化[J].图书情报工作,2014,58(2):138-142.
[30] 刘军.社会网络分析导论[M].北京:社会科学文献出版社,2004:98-101.
[31] Karamon J,Matsuo Y,Yamamoto H,et al.Generating social network features for link-based classification[C]//Proceedings of the 18th European Conference on Machine Learning(ECML 2007)/11th European Conference on Principles and Practice of Knowledge Discovery in Databases(PKDD 2007).Berlin:Sprmger, 2007:127-139.
[32] Krafft J,Quatraro F,Saviotti P P.The knowledge base evolution in biotechnology: A social network analysis[J].Economics of Innovation and New Technology,2011,20(5):445-475.
[33] 王念祖,隋鑫.2009~2013年两岸图书馆学热点对比研究[J].图书情报知识,2014(4):14-25.
[34] Chen Chaomei.CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature[J].Journal of the American Society for Information Science and Technology,2006,57(3):359-377.

Outlines

/