Penalized Matrix Decomposition and Its Application in Co-word Analysis

  • Shao Zuoyun ,
  • Li Xiuxia
Expand
  • 1. Library of Rizhao Campus, Qufu Normal University, Rizhao 276826;
    2. School of Communication, Qufu Normal University, Rizhao 276826

Received date: 2015-05-18

  Revised date: 2015-06-05

  Online published: 2015-07-05

Abstract

[Purpose/significance] Based on the idea of sparse dimension reduction, this paper proposes a new co-word analysis method with PMD (Penalized Matrix Decomposition).[Method/process] According to the PMD algorithm principle, this paper takes the subject service as research theme, and separately extracts the feature words extracting, makes the feature words soft clustering and visualizes clustering results in the Matlab environment. [Result/conclusion] Comparing with the traditional co-word analysis method, this paper finds that the PMD algorithm has some unique advantages in the co-word analysis, it can extract characteristic words more comprehensively, easily determine the clustering number, and get the more well clustering results.

Cite this article

Shao Zuoyun , Li Xiuxia . Penalized Matrix Decomposition and Its Application in Co-word Analysis[J]. Library and Information Service, 2015 , 59(13) : 126 -133,148 . DOI: 10.13266/j.issn.0252-3116.2015.13.018

References

[1] Callon M, Courtial J P, Turner W A, et al. From translations to problematic networks—An introduction to co-word analysis[J]. Social Science Information Sur Les Sciences Sociales, 1983,22(2):191-235.
[2] 喻培珍,秦惠基.从主题词频率变化分析我国放射诊断新技术发展趋势[J].医学图书馆通讯, 1995(3):26-27.
[3] 陈瑜林.我国远程教育主要研究领域演变——基于远程教育类期刊论文关键词的分析[J].中国远程教育, 2012(6):29-34,95.
[4] 李文兰,杨祖国.中国情报学期刊论文关键词词频分析[J].情报科学, 2005,23(1):68-70,143.
[5] 李长玲,翟雪梅.基于硕士学位论文的我国图书馆学与情报学研究热点分析[J].情报科学, 2008,26(7):1056-1060.
[6] Sardinha,Andrew P B. Applications of word smith keywords[J]. Liverpool Working Papers in Applied Linguistics,1996,2(1):81-90.
[7] 魏瑞斌.基于关键词的情报学研究主题分析[J].情报科学,2006,24(9):1400-1404.
[8] 杨爱青,马秀峰,张风燕,等.g指数在共词分析主题词提取中的应用研究[J].情报杂志, 2012,31(2):52-55.
[9] 邵作运,李秀霞.共词分析中作者关键词规范化研究——以图书馆个性化信息服务研究为例[J].情报科学,2012,30(5):731-735.
[10] 李纲,王忠义.基于语义的共词分析方法研究[J].情报杂志,2011,30(12):258-263.
[11] 杨彦荣.基于混合加权的共词分析方法研究[D].西安:西北农林科技大学,2011.
[12] 胡昌平,陈果.共词分析中的词语贡献度特征选择研究[J].现代图书情报技术,2013(7/8):89-93.
[13] 舒琅.基于社会网络分析的项目管理学科热点和主流知识群的研究[D].杭州:浙江大学,2010:71-72.
[14] 张勤.词频分析法在学科发展动态研究中的应用综述[J].图书情报知识,2011(2):95-98,128.
[15] 边 鹏,赵 妍,苏玉召.一种适合检索词推荐的K-means算法最佳聚类数确定方法[J].图书情报工作,2012,56(4):107-111.
[16] 王飒,包丽颖.基于文献计量的共词分析方法及应用述评[J].情报科学,2014, 32 (4):150-154.
[17] 蔡岳,袁津生.基于改进 DBSCAN 算法的文本聚类[J].计算机工程, 2011,37(12): 50-55.
[18] 唐东明.聚类分析及其应用研究[D].成都:电子科技大学,2010:16-23.
[19] 李纲,王忠义.基于语义共词分析的我国人际情报网络研究探析[J].情报资料工作,2011(5):21-27.
[20] 李广建,杨林.大数据视角下的情报研究与情报研究技术[J].图书与情报,2012(6):1-8.
[21] 董慧,余传明.中文本体的自动获取与评估算法分析[J].情报理论与实践,2005,28(4):415-418.
[22] Witten D M, Tibshirani R, Hastie T.A penalized matrix decomposition with applications to sparse principal components and canonical correlation analysis[J].Biostatistics,2009, 10(3):515-534.
[23] Zhang Jun, Zheng Chunhou, Liu Jinxing,et al. Discovering the transcriptional modules using microarray data by penalized matrix decomposition[J].Computers in Biology and Medicine, 2011,9(41):1041-1050.
[24] Zheng Chunhou, Zhang Lei, Yee Ng V To,et al. Molecular pattern discovery based on penalized matrix decomposition[J].IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2011,6(8):1592-1602.
[25] 王娟,范少萍,郑春厚.基于惩罚性矩阵分解的文本聚类分析[J].情报学报,2012,31(9):998-1008.
[26] 王磊.国内图书馆学科服务现状可视化分析[J].图书情报工作,2013,57(2):136-142.
[27] 初景利,张冬荣.第二代学科馆员与学科化服务[J].图书情报工作,2008,52(2):6-10.
[28] 王春明,张海惠,徐鸿,等.匹兹堡大学图书馆系统学科服务新进展——建立支持科研与教学的学科化服务体系[J].图书情报工作,2013,57(10):58-62.
[29] 钟伟金.共词分析法应用的规范化研究——主题词和关键词的聚类效果对比分析[J].图书情报工作,2011,55(6):114-118.

Outlines

/