Library and Information Service >
Research on Opinion Extraction Mechanism of Web Information Reviews in New Media Times
Received date: 2015-06-05
Revised date: 2015-07-04
Online published: 2015-07-20
[Purpose/significance] Identifying the public typical opinions from the redundant web reviews is helpful for public opinion analysis task. [Method/process] This paper proposes a method how to extract representative public opinions from web reviews with an unsupervised method. Firstly, it extracts the sentences from reviews which contains the high frequency terms reviews content, based on the template pre-defineded; secondly, it considers the relevance between reviews and corresponding articles, and extracts the pointwise-mutual information between terms in the sentences of candidate public opinions. Then it disposes the sentences and gets the final results that can reflect netizens' opinions.[Result/conclusion] The experiment result shows that the method proposed can effectively identify the sentences that have informative, readable, and convey the major opinions.
Zeng Runxi , Wang Junze , Du Hongtao . Research on Opinion Extraction Mechanism of Web Information Reviews in New Media Times[J]. Library and Information Service, 2015 , 59(14) : 111 -116,148 . DOI: 10.13266/j.issn.0252-3116.2015.14.016
[1] 中国互联网络信息中心. 第36次中国互联网络发展状况统计报告[R/OL].[2015-06-01].http://www.cnnic.net.cn/hlwfzyj/hlwxzbg/.
[2] Turney P D. Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews[C]//Proceedings of the 40th Annual Meeting on Association for Computational Linguistics. Philadelphia:Association for Computational Linguistics, 2002:417-424.
[3] Pang Bo, Lee L, Vaithyanathan S. Thumbs up? Sentiment classification using machine learning techniques[C]//Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing-Volume 10.Philadelphia:Association for Computational Linguistics, 2002:79-86.
[4] Cui Hang, Mittal V, Datar M. Comparative experiments on sentiment classification for online product reviews[C]//Proceedings of the 21st National Conference on Artificial Intelligence. Boston:Association for the Advancement of Artificial Intelligence, 2006.
[5] Mao Yi, Lebanon G. Isotonic conditional random fields and local sentiment flow[C]//Proceedings of the Conference on Advances in Neural Information Processing Systems.Vancouver:Neural Information Processing Systems Foundation,2006:961-968.
[6] Wei Wei, Gulla J A.Sentiment learning on product reviews via sentiment ontology tree[C]//Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics. Uppsala:Association for Computational Linguistics,2010.
[7] Kim S M, Hovy E.Determining the sentiment of opinions[C]//Proceedings of the 20th International Conference on Computational Linguistics.Geneva:International Committee on Computational Linguistics,2004:1367-1373.
[8] Kim S M, Hovy E H. Crystal:Analyzing predictive opinions on the Web[C]//Proceedings of the Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Morristown:Association for Computational Linguistics, 2007:1056-1064.
[9] 李光敏, 张行文, 张磊, 等. 面向网络舆情的评论文本情感分析研究[J]. 情报杂志, 2014, 33(5):157-160.
[10] 陈涛, 刘越. 一种基于在线评论共现特征词的舆情事件相关度计算方法[J]. 情报杂志, 2014, 33(9):141-147.
[11] Wang Junze, Yan Zheng, Yang L T, et al. An approach to rank reviews by fusing and mining opinions based on review pertinence[J]. Information Fusion, 2015(23):3-15.
[12] 阮光册. 基于 LDA 的网络评论主题发现研究[J]. 情报杂志, 2014, 33(3):161-164.
[13] 李丕绩, 马军, 张冬梅, 等. 用户评论中的标签抽取以及排序[J]. 中文信息学报, 2012, 26(5):14-19.
[14] Lu Yue, Zhai Chengxiang,Sundaresan N.Rated aspect summarization of short comments[C]//Proceedings of the 18th International Conference on World Wide Web.New York:Association for Computing Machinery,2009:131-140.
[15] Hu Minqing, Liu Bing. Mining and summarizing customer reviews[C]//Proceedings of the 10th International Conference on Knowledge Discovery and Data Mining. Seattle:Association for Computing Machinery,2004:168-177.
[16] Ganesan D, Zhai Chengxiang, Han Jiawei. Opinosis:A graph-based approach to abstractive summarization of highly redundant opinions[C]//Proceedings of the 23rd International Conference on Computational Linguistics.Beijing:The Association for Computational Linguistics, 2010:340-348.
[17] Yi J, Nasukawa T, Bunescu R, et al. Sentiment analyzer:Extracting sentiments about a given topic using natural language processing techniques[C]//IEEE International Conference on Data Mining Beijing:The Association for Computational Linguistics.Melbourne:IEEE Computer Society,2003:427-434.
[18] Abulaish M, Jahiruddin, Doja M N, et al. Feature and opinion mining for customer review summarization[M]//Lecture Notes in Computer Science.Berlin:Springer, 2009:219-224.
[19] Zhuang Li, Jing Feng, Zhu Xiaoyan. Movie review mining and summarization[C]//Proceedings of the International Conference on Information & Knowledge Management.Arlington:Association for Computing Machinery,2006:6-11.
[20] Hai Zhen, Chang Kuiyu, Cong Gao. One seed to find them all:Mining opinion features via association[C]//Proceedings of the 21st ACM International Conference on Information and Knowledge Management.Hawaii:ACM, 2012:255-264.
[21] Kumar V R, Raghuveer K. Dependency driven semantic approach to product features extraction and summarization using customer reviews[M]//Advances in Computing and Information Technology. Berlin:Springer, 2013:225-238.
[22] Page L, Brin S, Motwani R, et al.The PageRank citation ranking:Bringing order to the Web[OL].[2015-06-01].http://www-db.stanford.edu/~backrub/pageranksub.ps.The PageRank Citation Ranking:Bringing order to the Web, 1999.
[23] 赵斌. 基于点间互信息的主题优化方法[D]. 哈尔滨:哈尔滨工业大学, 2012.
[24] 蔺璜, 郭姝慧. 程度副词的特点范围与分类[J]. 山西大学学报(哲学社会科学版), 2003, 26(2):71-74.
[25] 张谊生. 论现代汉语的范围副词[J]. 上海师范大学学报(哲学社会科学版), 2001(1):107-113.
/
〈 |
|
〉 |