Construction of Knowledge Retrieval Platform Based on Historic Ontology of the People's Republic of China

  • Wang Ying ,
  • Zhang Zhixiong ,
  • Sun Hui ,
  • Lei Feng
Expand
  • 1. National Science Library, Chinese Academy of Sciences, Beijing 100190;
    2. The Institute of Contemporary China Studies, Beijing 100009

Received date: 2015-07-29

  Revised date: 2015-08-07

  Online published: 2015-08-20

Abstract

[Purpose/significance]This paper aims to build a historic knowledge retrieval platform, improve the efficiency access for users to history of the People's Republic of China, and promote its publicity and education.[Method/process]It proposes the construction idea and framework of the knowledge retrieval platform based on historic ontology of the People's Republic of China.Based on the ontology knowledge base, this platform uses Neo4j database as data storage, creates three index based on Solr, including instance index, triple index and text item index.For various retrieval demands, the execution process of retrieval engine, construction method of retrieval expression, query processing algorithm and knowledge visualization are designed and implemented.[Result/conclusion]The knowledge retrieval platform has been constructed, which provides entity search, query answering, relevance search, temporal retrieval and semantic resources browsing services.Its framework and implement of key technologies can provide an important reference for depth retrieval service on other domain knowledge.

Cite this article

Wang Ying , Zhang Zhixiong , Sun Hui , Lei Feng . Construction of Knowledge Retrieval Platform Based on Historic Ontology of the People's Republic of China[J]. Library and Information Service, 2015 , 59(16) : 119 -128 . DOI: 10.13266/j.issn.0252-3116.2015.16.018

References

[1] Kngine[EB/OL].[2015-03-10].http://www.baike.com/wiki/Kngine.
[2] WolframAlpha[EB/OL].[2015-05-10] http://baike.baidu.com/link?url=7hCseBbIipm9Xo0xOeMo7jVuCrgcUMWTO7F-yW7lUr9YkjUw7_WmG3_i9yeyiRAoRVCvNCPbD6JxzNfyJ4ET6_.
[3] Singhal A.Introducing the Knowledge Graph: Things, Not Strings[EB/OL].[2013-04-10].http://googleblog.blogspot.co.uk/2012/05/introducing-knowledge-graph-things-not.html.
[4] 张阔.从搜索信息到搜索知识——技术架构[EB/OL].[2013-03-26].http://weibo.com/1870490225/zbzDwq5TF#_rnd1435219297630.
[5] 王昊奋.大规模知识图谱技术[EB/OL].[2014-10-12].http://blog.sciencenet.cn/home.php/fgcfmt/home.php?mod=space&uid=1225851&do=blog&id=801901.
[6] Tummarello G, Delbru R, Oren E.Sindice.com: Weaving the Open Linked Data[C]//Proceedings of 6th International Semantic Web Conference.Berlin:Springer,2007: 552-565.
[7] Wang Haofen,Liu Qiaoling,Penin T, et al.Semplore: A scalable IR approach to search the Web of data[J].Web Semantics: Science, Services and Agents on the World Wide Web, 2009, 7(3): 177-188.
[8] Damljanovic D, Agatonovic M, Cunningham H.FREyA: An interactive way of querying linked data using natural language[C]//Proceedings of ESWC 2011 Workshops Berlin:Springer, 2012: 125-138.
[9] Freitas A,Oliveira J G, O'Riain S, et al.Querying linked data using semantic relatedness: A vocabulary independent approach[C]//Proceedings of 16th International Conference Applications of Natural Language to Information Systems.Berlin:Springer, 2011:40-51.
[10] Abacha A, Zweigenbaum P.MEANS: A medical question-answering system combining NLP techniques and semantic Web technologies[J].Information Processing and Management, 2015, 51(3):570-594.
[11] 孙辉, 雷枫.中华人民共和国史本体构建初探[J].现代情报,2014,34(2):32-42.
[12] 洪娜, 朱凯, 王军辉,等.利用RelFinder实现生物医学语义关系发现[J].情报杂志,2013,32(4):142-148.
Outlines

/