Correlation Model Construction of Emotional Dimension of Network Public Opinion Information for Big Data

  • Huang Wei ,
  • Liu Yingjie ,
  • Wang Jiejing ,
  • Han Ruixue
Expand
  • School of Management, Jilin University, Changchun 130022

Received date: 2015-09-27

  Revised date: 2015-10-20

  Online published: 2015-11-05

Abstract

[Purpose/significance]The emotional dimension is the evaluation signal for early warning level of the network public opinion information, and the relevent model construction of its infuence factors can clearly describe the complex relationships between factors and the relationship with the big data network public opinion environment, so as to provide a reference for in-depth study of the emotional development of network public opinion information for big data.[Method/process]According to the emotion dimension theory, the emotional dimension elements model in the big data network environment is constructed from three dimensions of the type of emotion, conversion of emotion and arousal of emotion.[Result/conclusion]The empirical analysis results show that, in the emotional dimension model of public opinion information for big data, there is a significant correlation between the emotional level, emotional reaction and emotional focus dimension of public opinion information for big data; there is a weak correlation between emotional orientation and other dimensions; there is no completely independent element in the emotional dimension model.

Cite this article

Huang Wei , Liu Yingjie , Wang Jiejing , Han Ruixue . Correlation Model Construction of Emotional Dimension of Network Public Opinion Information for Big Data[J]. Library and Information Service, 2015 , 59(21) : 15 -20 . DOI: 10.13266/j.issn.0252-3116.2015.21.002

References

[1] 林敏. 网络舆情:影响因素及其作用机制研究[D].杭州:浙江大学,2013.
[2] Poria S,Cambria E, Hussain A,et al. Towards an intelligent framework for multimodal affective data analysis[J]. Neural Networks,2014,63(5): 104-116.
[3] Vlachostergiou A,Caridakis G,Kollias S. Investigating context awareness of affective computing systems: A critical approach[J]. Procedia Computer Science,2014,39(11): 91-98.
[4] Bakhtiyari K, Husain H. Fuzzy model of dominance emotions in affective computing[J]. Neural Computing and Applications,2014,25(6): 1467-1477.
[5] Muller M. Multiple paradigms in affective computing[J]. Interacting with Computers,2004,16(4): 759-768.
[6] 陈忆金,曹树金,陈桂鸿. 网络舆情意见挖掘:用户评论情感倾向分析研究[J]. 图书情报知识,2013(6):90-96.
[7] 王兰成,徐震.基于情感本体的主题网络舆情倾向性分析[J].信息与控制,2013(1):46-52.
[8] 何锡彤. 针对网络舆情热点信息的文本情感倾向分析研究[D].大连:东北财经大学,2013.
[9] 王静. 突发事件网络舆情的情感倾向及演化分析[D].哈尔滨:哈尔滨工业大学,2012.
[10] 万源. 基于语义统计分析的网络舆情挖掘技术研究[D].武汉:武汉理工大学,2012.
[11] 何天翔,张晖,李波,等. 一种基于情感分析的网络舆情演化分析方法[J]. 软件导刊,2015(5):131-134.
[12] 刘红玉. 网络舆情情感分析系统的设计与实现[D].成都:电子科技大学,2013.
[13] 张晓霞,王名扬,贺慧新. 结合情感分析的突发事件舆情网络关键节点挖掘[J]. 新疆大学学报(自然科学版),2015(2):1-6.
[14] 曹学艳,段飞飞,方宽,等. 网络论坛视角下突发事件舆情的关键节点识别及分类研究[J]. 图书情报工作,2014,58(4):65-70.
[15] 黄卫东,陈凌云,吴美蓉.网络舆情话题情感演化研究[J].情报杂志,2014(1):102-107.
[16] 江道平,班晓娟,尹怡欣,等.情感理论及基于情感的决策理论与模型研究[J].计算机科学,2007,34(4):154-170.
[17] 罗莎琳德,皮卡德.情感计算[M].罗森林,译.北京:北京理工大学出版社,1997: 53-54.
[18] 王俊秀. 社会心态:转型社会的社会心理研究[J].社会学研究,2014(1):104-124,244.
[19] 罗哈尔,米尔凯,等.社会心理学:从社会学的角度看清社会心理现象[M].郑全全,张锦,等译.北京:机械工业出版社,2015:201-270.
[20] 唐涛. 基于大数据的网络舆情分析方法研究[J].现代情报,2014(3):3-11.
[21] 施寒潇. 细粒度情感分析研究[D]. 苏州:苏州大学,2013.
[22] Damasio A. Descartes'error: Emotion,reason and the human brain[M]. New York:Picador,1994.
[23] 刘烨,陶霖密,傅小兰. 基于情绪图片的PAD情感状态模型分析[J]. 中国图象图形学报,2009(5):753-758.
[24] 董学杰.基于情感模型的辩论谈判系统研究[D].北京:北京工业大学,2013.
[25] 杨静,李文平,张健沛.大数据典型相关分析的云模型方法[J].通信学报,2013,34(10):154-170.
[26] 于冬梅. 情感计算关键技术研究[D].上海:东华大学,2009:66-67.
[27] Subasie P,Huettner A.Affect analysis of text using Fuzzy semantic typing[J]. IEEE Transactions on Fuzzy Systems,2001,9(4):483-496.
[28] Wiebe J,Riloff E.Creating subjective and objective sentence classifiers from unannotated text[C]//Proceedings of the 6th International Conference on Computational Linguistics and Intelligent Text Professing.Korea:Seoul,2005:486-497.

Outlines

/