Library and Information Service >
Information Process Reengineering Based on the Principle of Data Farming
Received date: 2015-10-28
Revised date: 2015-12-06
Online published: 2015-12-20
[Purpose/significance] In view of deficiencies of current information consulting service, such as complexity of consulting problem analysis, uncertainty of decision options, and delay of consulting effect evaluation, the consulting service effect can be improved by setting up a set of information consulting process to guide the library to provide better information consulting service.[Method/process] The technical concept of data farming is introduced into the traditional consultation procedure. Combined with characteristics of the technique, such as simulation, cycled exploration and collaboration, a series of consultation procedures are tried to be built, which include "data sowing", "data fertilizing", "data farming", "data cultivating", and "data harvesting".[Result/conclusion] The simulation results of the process under the technical concept of data farming show that after introducing the technical concept of data farming, the consulting process applies uncertain data, enriches the consulting result, improves selection and evaluation of the optimal consulting effect, and provides beneficial reference for study and practice of consulting service.
Key words: information consultation; consultation procedure; data farming
Liu Baorui , Guo Hongxiao . Information Process Reengineering Based on the Principle of Data Farming[J]. Library and Information Service, 2015 , 59(24) : 33 -38 . DOI: 10.13266/j.issn.0252-3116.2015.24.005
[1] 詹德优.信息咨询理论与方法[M].武汉:武汉大学出版社,2010.
[2] Brandstein A, Horne G E. Data farming: A meta-technique for research in the 21st century[OL].[2015-10-09].http://www.projectalbert.org/files/data_farming.pdf.
[3] Ilachinski A. Irreducible semi-autonomous adaptive combat: An artificial life approach to land combat[J]. Military Operations Research 5, 2000 (3): 29-45.
[4] Horne Gary E. Beyond point estimates: Operational synthesis and data farming[OL].[2015-10-09].http://www.projectalbert.org/files/opsyn_datafarm.pdf.
[5] 胡晓峰,杨靖宇,胡润涛.数据耕耘:一种基于协同的探索性仿真分析方法[J].系统仿真学报, 2007(4):1651-1655.
[6] 林岩峰,包卫东.系统仿真中数据耕耘思想研究[C]//2007年系统仿真技术及其应用学术会议论文集第9卷.合肥:中国自动化学会系统仿真专业委员会,2007:979-981.
[7] 林岩峰.基于数据耕耘的多Agent仿真的想定生成与优化研究[D].长沙:国防科学技术大学,2007.
[8] 林岩峰,包卫东,黄金才.数据耕耘方法[J].火力与指挥控制,2009(1):4-7.
[9] 胡润涛,胡晓峰.基于数据耕耘方法探索战争中的非线性[J].计算机仿真,2009(2):1-3,22.
[10] 胡润涛,胡晓峰.基于数据耕耘的探索性仿真分析框架设计[J].计算机仿真,2009(1):8-10,79.
[11] 李斌,李春洪,刘苏洋.基于数据耕耘的探索性仿真实验框架研究[J].指挥控制与仿真,2011(4):57-62.
[12] 张兴旺.数据耕耘理论及其大数据知识服务视角解读[J].情报资料工作,2015(3):53-57.
[13] 刘志广,王军锋,郑立新.咨询顾问思维技能提升[M].北京:机械工业出版社,2004.6.
[14] 科普咨询的7C模式[M].北京燕清联合传媒管理咨询中心,译.北京:机械工业出版社,2004.
[15] 菲力.普斯咨询绩效评估[M].段盛华,余凤霞,译.上海:上海远东出版社,2002.
[16] 陈艳冬.基于服务流程分析的知识咨询技术应用展望[J].山东图书馆学刊,2013(2):22-24.
/
〈 |
|
〉 |