Review and Prospects of Study on Patent Technological Relatedness Methods

  • Ru Lijie ,
  • Zhang Xian
Expand
  • 1. Chengdu Library, Chinese Academy of Sciences, Chengdu 610041;
    2. University of Chinese Academy of Sciences, Beijing 100190

Received date: 2016-01-20

  Revised date: 2016-03-06

  Online published: 2016-03-20

Abstract

[Purpose/significance] The study of patent technological relatedness is of great significance for patent analysis and patent management. In this paper some typical methods are reviewed in order to provide new ideas for further research.[Method/process] In this paper we define the concept of the patent technological relatedness, and further review and analyze the methods of patent technological similarity and patent technological complementarity, and put forward the research thoughts.[Result/conclusion] The methods of patent technological similarity can be put into three types, including the methods based on patent classification system, patent citation and text mining, and each of them has its advantages and limits. The study of patent technological complementarity is relatively weak, whose methods need to be further studied. The collaborative study of both patent technological similarity and patent technological complementarity is very little. And the application range of patent technological relatedness needs to be extended in future.

Cite this article

Ru Lijie , Zhang Xian . Review and Prospects of Study on Patent Technological Relatedness Methods[J]. Library and Information Service, 2016 , 60(6) : 128 -134,141 . DOI: 10.13266/j.issn.0252-3116.2016.06.019

References

[1] GARFIELD E. Patent citation indexing and the notions of novelty, similarity, and relevance[J]. Journal of chemical documentation, 1966, 6(2):63-65.
[2] JAFFE A B. Technological opportunity and spillovers of R&D:evidence from firms' patents, profits, and market value[J]. American economic review, 1986,76(5):984-1001.
[3] RRCO M C, BAINBRIDGE W S. Converging technologies for improving human performance:nanotechnology, biotechnology, information technology and cognitive science[J]. Research technology management, 2003, 45(6):60-61.
[4] LUAN C, LIU Z, WANG X. Divergence and convergence:technology-relatedness evolution in solar energy industry[J]. Scientometrics, 2013, 97(2):461-475.
[5] CLARKSONG G.Objective identification of patent thickets:a network analytic approach[D].Boston:Harvard Business School, 2004.
[6] DIBIAGGIO L, NASIRIYAR M, NESTA L. Substitutability and complementarity of technological knowledge and the inventive performance of semiconductor companies[J]. Research policy, 2014, 43(9):1582-1593.
[7] CASSIMAN B, COLOMBO M G, GARRONE P, et al. Impact of M&A on the R&D process:an empirical analysis of the role of technological and market relatedness[J]. Ssrn electronic journal, 2003, 34(2):195-220.
[8] PETRUZZELLI A M. The impact of technological relatedness, prior ties, and geographical distance on university-industry collaborations:a joint-patent analysis[J]. Technovation, 2011, 31(7):309-319.
[9] SAPIENZA H J, PARHANKANGAS A,AUTIO E. Knowledge relatedness andpost-spin-off growth[J]. Journal of business venturing, 2004,19(6):809-829.
[10] MAKRI M, HITT M A, LANE P J. Complementary technologies, knowledge relatedness, and invention outcomes in high technology mergers and acquisitions[J]. Strategic management journal, 2010, 31(6):602-628.
[11] 暴海龙,李金林.专利技术关联性分析方法研究[J].科研管理,2004,25(9):4-7.
[12] 梁启华.跨国公司的技术关联性及我国吸引外资政策[J].国际贸易问题,2005(8):74-77.
[13] NO H J, AN Y, PARK Y. A structured approach to explore knowledge flows through technology-based business methods by integrating patent citation analysis and text mining[J]. Technological forecasting & social change, 2014, 97(8):181-192.
[14] NAKAMURA H, SUZUKI S, SAKATA I, et al. Knowledge combination modeling:the measurement of knowledge similarity between different technological domains[J]. Technological forecasting & social change, 2014, 94(5):187-201.
[15] ENGELSMAN E C, RAAN A F J V. A patent-based cartography of technology[J]. Research policy, 1994, 23(94):1-26.
[16] BRESCHI S, LISSONI F, MALERBA F. Knowledge-relatedness in firm technological diversification[J]. Research policy, 2003, 32(1):69-87.
[17] LEYDESDORFF L, VAUGHAN L. Co-occurrence matrices and their applications in information science:extending ACA to the Web environment[J]. Journal of the American Society for Information Science & Technology, 2006, 57(12):1616-1628.
[18] LEYDESODRFF L. Patent classifications as indicators of intellectual organization[J]. Journal of the American Society for Information Science & Technology, 2008, 59(10):1582-1597.
[19] HYUNG J S, KIM Y. Measuring relatedness between technological fields[J]. Scientometrics, 2010, 83(2):435-454.
[20] TEECE D J, RUMELT R, DOSI G, et al. Understanding corporate coherence:theory and evidence[J]. Journal of economic behavior & organization, 1994, 23(1):1-30.
[21] NESTA L, SAVIOTTI P P. Coherence of the knowledge base and the firm's innovative performance:evidence from the U.S. pharmaceutical industry[J]. Journal of industrial economics, 2005, 53(1):123-142.
[22] DIETER F K, DAVID L R, ISAAC T. Mapping knowledge space and technological relatedness in US cities[J]. European planning studies, 2013, 21(9):1374-1391.
[23] VLCKOVA J, KASPíková N. Knowledge relatedness and knowledge space based on EPO patents[J]. Prague economic papers, 2015, 24(4):399-415.
[24] CASCINI G, ZINI M. Measuring patent similarity by comparing inventions functional trees[M]. New York:Springer, 2008:31-42.
[25] LAI K K, WU S J. Using the patent co-citation approach to establish a new patent classification system[J]. Information processing & management, 2005, 41(2):313-330.
[26] JAFFE A B, HENDERSON R. Geographic localization of knowledge spillovers as evidenced by patent citations[J]. Quarterly journal of economics, 1993, 108(3):577-598.
[27] CHANG S B. Using patent analysis to establish technological position:two different strategic approaches[J]. Technological forecasting & social change, 2012, 79(1):3-15.
[28] MOWERY D C,OXLEY J E,SILVERMAN B S. Technological overlap and inter-firm cooperation:implications for the resource-based view of firm[J]. Research policy,1998,27(5):507-523.
[29] McGILL J P. Technological knowledge and governance in alliances among competitors[J]. Informational journal of technology management,2007,38(1):69-89.
[30] 李睿,张玲玲,郭世月.专利同被引聚类与专利引用耦合聚类的对比分析[J].图书情报工作,2012,56(8):91-95.
[31] MORRIS S, DEYONG C, WU Z, et al. Diva:a visualization system for exploring document databases for technology forecasting[J]. Computers & industrial engineering, 2002, 43(4):841-862.
[32] 王舒.基于专利引用的企业技术影响力及其创新战略分析[D].大连:大连理工大学,2011.
[33] SHIBATA N, KAJIKAWA Y, SAKATA I. Measuring relatedness between communities in a citation network[J]. Journal of the American Society for Information Science & Technology, 2011, 62(7):1360-1369.
[34] RODRIGUEZ A, KIM B, TURKOZ M, et al. New multi-stage similarity measure for calculation of pairwise patent similarity in a patent citation network[J]. Scientometrics, 2015, 103(2):565-581.
[35] TSENG Y H, LIN C J, LIN Y I. Text mining techniques for patent analysis[J]. Information processing & management, 2007, 43(5):1216-1247.
[36] 胡正银,方曙.专利文本技术挖掘研究进展综述[J].现代图书情报技术,2014(6):62-70.
[37] YOON B, PARK Y. A text-mining-based patent network:analytical tool for high-technology trend[J]. Journal of high technology management research, 2004(15):37-50.
[38] 胡冰,张建立.基于统计分布的中文专利自动分类方法研究[J].现代图书情报技术,2013,29(7):101-106.
[39] MCGILL M. An evaluation of factors affecting document ranking by information retrieval systems[J]. Algorithms, 1979(10):36-64.
[40] LIM S S, JUNG S W, KWON H C. Improving patent retrieval system using ontology[C]//Proceedings of the 30th annual conference of IEEE.Busan:IEEE, 2004:2646-2649.
[41] WEN G, JIANG L, SHADBOLT N R. Ontology-based similarity between text documents on manifold[C]//Proceedings of the semantic Web ASWC 2006 conference. Beijing:Springer, 2006:113-125.
[42] PARK H, YOON J, KIM K. Identifying patent infringement using SAO based semantic technological similarities[J]. Scientometrics, 2012, 90(2):515-529.
[43] PARK H, YOON J, KIM K. Identification and evaluation of corporations for merger and acquisition strategies using patent information and text mining[J]. Scientometrics, 2013, 97(3):883-909.
[44] CHOI S, PARK H, KANG D, et al. An SAO-based text mining approach to building a technology tree for technology planning[J]. Expert systems with applications, 2012, 39(13):11443-11455.
[45] YOON J, PARK H, KIM K. Identifying technological competition trends for R&D planning using dynamic patent maps:SAO-based content analysis[J]. Scientometrics, 2013, 94(1):313-331.
[46] 胡正银. 基于个性化语义TRIZ的专利技术挖掘研究[D].成都:中国科学院成都文献情报中心,2015.
[47] LIN L. Licensing strategies in the presence of patent thickets[J]. Journal of product innovation management, 2011, 28(5):698-725.
[48] SANTORE R, MCKEE M, BJORNSTAD D. Patent pools as a solution to efficient licensing of complementary patents? some experimental evidence[J]. Journal of law & economics, 2010, 53(1):167-183.
[49] KARVONEN M, LEHTOVAARA M, KASSI T. Managing technological convergence:evidence from printed intelligence industry[C]//Proceedings of Portland international conference on management of engineering & technology. Portland:IEEE, 2009:396-408.
[50] WANG M Y, CHIU T F, CHEN W Y. Exploring potential R&D collaborators based on patent portfolio analysis:the case of biosensors[C]//Proceedings of Portland international conference on management of engineering & technology. Portland:IEEE, 2009:322-330.
[51] 洪结银.基于产业组织和反垄断规制视角的专利池经济理论研究梳理[J].现代财经,2011(10):123-129.
[52] 李辉,檀润华,许波,等.基于预期失效分析的伞型专利组合规避设计[J].机械工程学报,2015(12):1-11.
[53] 李慧民.以替代、互补性专利为基础的专利池效率分析[D].大连:东北财经大学,2010.
[54] BAUM J A C, COWAN R, JONARD N. Network-independent partner selection and the evolution of innovation networks[J]. Management science, 2009, 56(11):2094-2110.
[55] BROEKEL T, BRACHERT M. The structure and evolution of inter-sectoral technological complementarity in R&D in Germany from 1990 to 2011[J].Journal of evolutionary economics, 2015, 25(4):1-31.
[56] 魏翔.中国企业海外并购整合风险——基于技术相似性和互补性视角[D].杭州:浙江大学,2015.
[57] 刘美丽.中国海外并购技术整合风险案例研究[D].杭州:浙江大学,2013.
[58] WANG M Y. Exploring potential R&D collaborators with complementary technologies:The case of biosensors[J]. Technological forecasting & social change, 2012, 79(5):862-874.
[59] COLOMBELLI A, KRAFFT J, QIATRARO F. Properties of knowledge base and firm survival:evidence from a sample of French manufacturing firms[J]. Technological forecasting & social change, 2013, 80(8):1469-1483.
[60] CHANG P C, CHANG Y H, SU F P, et al. The study on patent acquisition from complementarity and supplementarity:evidence from smartphones of Apple and Samsung[C]//Proceedings of Portland international conference on management of engineering & technology. Portland:IEEE, 2014:2996-3003.
[61] 张端阳,肖国华,李文燕. 面向专利集成的专利技术相关性测度方法研究[J]. 情报杂志,2014(11):54-61.
Outlines

/