Library and Information Service >
Analysis of the Participation Motivation of Information Audience in the Network Public Opinion Events
Received date: 2016-02-01
Revised date: 2016-04-05
Online published: 2016-05-05
[Purpose/significance] In order to grasp the psychology of the public opinion audience, this paper focuses on the research of the motivation to participate in the network of public opinion events and offers a theoretical basis to guide the online public opinion with appropriate direction.[Method/process] With a qualitative and quantitative perspective, based on the grounded theory, ten motivation categories have been extracted from the coding and the significance of the motivation category was systematically analyzed with the help of the formal concept analysis to incorporate quantitative thinking into the encoding process of original data.[Result/conclusion] The influence of three kinds of motivation in terms of the crisis, the unexpected degree and the difficulty of management from public opinion events has been revealed. This provides references to divide the audience groups from the perspective of motivation and intervene the network public opinion purposely.
Gao Junfeng . Analysis of the Participation Motivation of Information Audience in the Network Public Opinion Events[J]. Library and Information Service, 2016 , 60(9) : 91 -98 . DOI: 10.13266/j.issn.0252-3116.2016.09.013
[1] 李昌祖,张洪生.网络舆情的概念解析[J].现代传播,2010(9):139-140.
[2] 汪春香,徐立青,赵树成.影响食品安全网络舆情网民行为的主要因素识别研究[J].情报杂志,2015(3):138-143.
[3] 强韶华,吴鹏.突发事件网络舆情演变过程中网民群体行为仿真研究[J].现代图书情报技术,2014(6):71-78.
[4] LI G,HOI S C H,CHANG K,et al. Micro-blogging sentiment detection by collaborative online learning[C] //2010 IEEE 10th International Conference on Data Mining(ICDM). Sydney: IEEE,2010: 893-898.
[5] GHIASSI M,SKINNER J, ZIMBRA D. Twitter brand sentiment analysis:A hybrid system using n-gram analysis and dynamic artificial neural network[J].Expert systems with applications,2013(16):6266-6282.
[6] PARIKH R,MOVASSATE M. Sentiment analysis of user-generated Twitter updates using various classification techniques[R].Stanford: Stanford University,2009.
[7] DAVIDOV D,SSUR O,RAPPOPORT A. Enhanced sentiment learning using Twitter hashtags and smileys[C] / / Proceedings of the 23rd International Conference on Computational Linguistics: Posters.Beijing: Association for Computational Linguistics, 2010: 241-249.
[8] MASDEVAL C, VELOSO A.Mining citizen emotions to estimate the urgency of urban issues[J].Information systems, 2015(6): 147-155.
[9] 毕宏音.网络舆情形成与变动中的群体影响分析[J].天津大学学报, 2007(3): 270-273.
[10] SE J P,YON S L,HAN W P. Comparing Twitter and YouTube networks in information diffusion:the case of the "Occupy Wall Street" movement[J]. Technological forecasting & social change,2015(3):208-217.
[11] 方付建,王国华,徐晓林.突发事件网络舆情"片面化呈现"的形成机理-基于网民的视角[J].情报杂志,2010(4):26-30.
[12] 孙静.网络群体性事件参与者心理特点与疏导[J].中国人民公安大学学报, 2010(2): 14-18.
[13] 杨威,张秋波,兰月新.网民规模和结构对网络舆情的驱动影响[J].现代情报, 2015(4): 145-149.
[14] SANDERSONA J, BARNESB K, WILLIAMSONB C,et al."How could anyone have predicted that #AskJameis would go horribly wrong?"public relations, social media, and hashtag hijacking[J].Public relations review,2015(11):31-37.
[15] RODRÁGUEZ HIDALGO C T, TAN E S H, VERLEGH P W J.The social sharing of emotion (SSE) in online social networks: a case study in live journal[J]. Computers in human behavior,2015(6):364-372.
[16] GLASER B G, STRAUSS A L. The discovery of grounded theory:strategies for qualitative research[M].New York: Aldine Publishing Company,1967.
[17] GLASER B, HOLTON J. The grounded theory seminar reader[M].Mill Valley: Sociology Press, 2007.
[18] GANTER B, WILLE R.Formal concept analysis[M].马垣,译.北京:科学出版社,2007.
[19] 侯玉波.社会心理学[M].北京:北京大学出版社,2013.
[20] 燕道成.群体事件中的网络舆情研究[M].北京:新华出版社,2013.
/
〈 | 〉 |