Research on Social Context Aware Computing and Its Key Technologies

  • Li Fenglin ,
  • Chen Dexin
Expand
  • Center for Studies of Information Resources of Wuhan University, Wuhan 430072

Received date: 2016-01-29

  Revised date: 2016-04-14

  Online published: 2016-05-05

Abstract

[Result/conclusion] This paper aims to summarize and analyze the research object, characteristics, and key technologies of social context aware computing.[Method/process] Based on the literature research, with the concept of social situation as the starting point, this paper reviews the key theories and technologies of social context acquisition, social context modeling, social context reasoning and security & privacy from the perspective of social context aware system.[Result/conclusion] This paper summarizes five dimensions to describe social context, discusses differences and relations of social context-aware computing with traditional context-aware computing, and comparatively analyzes the feature and applicability of social context aware computing key technologies. It provides some theory bases and references for the selection and application of key technologies in social context aware computing research.

Cite this article

Li Fenglin , Chen Dexin . Research on Social Context Aware Computing and Its Key Technologies[J]. Library and Information Service, 2016 , 60(9) : 139 -146 . DOI: 10.13266/j.issn.0252-3116.2016.09.019

References

[1] ADAMS P.Grouped:how small groups of friends are the key to influence on the social Web[M]. Berkeley: New Riders, 2011.
[2] LU Y, TSAPARAS P, NTOULAS A, et al. Exploiting social context for review quality prediction[C] //Proceedings of the 19th international conference on World Wide Web. New York: ACM, 2010: 691-700.
[3] ALVES D, FREITAS M, MOURA T, et al. Using social network information to identify user contexts for query personalization[C] //Proceedings of the international conference on advances in databases, knowledge, and data applications. Seville:IARIA, 2013: 45-51.
[4] XUAN H P, JUNG J J, LE A V, et al. Exploiting social context for movie recommendation[J]. Malaysian journal of computer science, 2014, 27(1):68-79.
[5] TONINELLI A, PATHAK A, ISSARNY V. Yarta: a middleware for managing mobile social ecosystems[C] //Proceedings of the sixth international conference on advances in grid and pervasive computing. Berlin: Springer Berlin Heidelberg, 2011:209-220.
[6] GUPTA A, KALRA A, BOSTON D, et al. MobiSoC: a middleware for mobile social computing applications[J]. Mobile networks and applications, 2009, 14(1): 35-52.
[7] LIU G, WANG Y, ORGUN M A. Social context-aware trust network discovery in complex contextual social networks[C] //Proceedings of the twenty-sixth AAAI conference on artificial intelligence.Palo Alto: AAAI,2012, 12: 101-107.
[8] LI Y, MA S, HUANG R. Social Context Analysis for topic-specific expert finding in online learning communities[M]. Berlin: Springer Berlin Heidelberg, 2015: 57-74.
[9] KABIR M A, HAN J, YU J, et al. SCIMS: a social context information management systemfor socially-aware applications[C] //Proceedings of the 24th international conference on advanced information systems engineering. Berlin: Springer-Verlag, 2012:301-317.
[10] KABIR M A, COLMAN A, HAN J. SocioPlatform: a platform for social context-aware applications[M] //Context in computing. New York: Springer-Verlag, 2014: 291-308.
[11] KOURTELLIS N, FINNIS J, ANDERSON P, et al. Prometheus: user-controlled P2P social data management for socially-aware applications[C] //Proceedings of the ACM/IFIP/USENIX 11th international conference on middleware. Berlin: Springer-Verlag, 2010: 212-231.
[12] PRELL C. Social network analysis: history, theory and methodology[M].London: Sage, 2012.
[13] DEY A K, ABOWD G D, SALBER D. A conceptual framework and a toolkit for supporting the rapid prototyping of context-aware applications[J]. Human-computer interaction, 2001, 16(2): 97-166.
[14] CONTI M, DAS S K, BISDIKIAN C, et al. Looking ahead in pervasive computing:challenges and opportunities in the era of cyber-physical convergence[J]. Pervasive and mobile computing, 2012, 8(1): 2-21.
[15] PAPAPETROU P, ROUSSOS G. Social context discovery from temporal app use patterns[C] // Proceedings of the 2014 ACM international joint conference on pervasive and ubiquitous computing: Adjunct Publication.New York: ACM, 2014:397-402.
[16] PIETILÄINEN A K, OLIVER E, LEBRUN J, et al. MobiClique: middleware for mobile social networking[C] //Proceedings of the 2nd ACM workshop on online social networks.New York:ACM, 2009: 49-54.
[17] BIAMINO G. Modeling social contexts for pervasive computing environments[C] // Proceedings of pervasive computing and communications workshops. New York: IEEE, 2011:415-420.
[18] MIDDLETON S E, GOTTRON T. Context extraction methods and context framework[EB/OL].[2016-01-24]. http://revealproject.eu/wp-content/uploads/D4.1-Context-Extraction-Methods-and-Context-Framework.pdf.
[19] BEACH A, GARTRELL M, AKKALA S, et al. WhozThat? Evolving an ecosystem for context-aware mobile social networks.[J]. Network IEEE, 2008, 22(4):50-55.
[20] BETTINI C, BRDICZKA O, HENRICKSEN K, et al. A survey of context modelling and reasoning techniques[J]. Pervasive and Mobile Computing, 2010, 6(2): 161-180.
[21] CHEN G, KOTZ D. A survey of context-aware mobile computing research[EB/OL].[2015-12-24]. https://mmlab.snu.ac.kr/courses/2005_advanced_internet/handout/ppt/36%20-%20context_aware.pdf.
[22] PERERA C, ZASLAVSKY A, CHRISTEN P, et al. Context aware computing for the Internet of Things: a survey[J].IEEE communications surveys & tutorials, 2014, 16(1): 414-454.
[23] ARNABOLDI V, CONTI M, DELMASTRO F. CAMEO:a novel context-aware middleware for opportunistic mobile social networks[J]. Pervasive & mobile computing, 2014, 11(2):148-167.
[24] HENRICKSEN K, INDULSKA J. Developing context-aware pervasive computing applications:models and approach[J].Pervasive and mobile computing, 2006, 2(1):37-64.
[25] HATZI O, MELETAKIS G, KATSIVELIS P, et al. Extending the social network interaction model to facilitate collaboration through service provision[M] //Enterprise, business-process and information systems modeling.Berlin: Springer Berlin Heidelberg, 2014: 94-108.
[26] BRICKLEY D, MILLER L. FOAF vocabulary specification 0.98[EB/OL].[2015-12-17]. http://ontogenealogy.com/documents/2012/08/foaf-vocabulary-specification-0-98-20100809.pdf.
[27] BRESLIN J G, HARTH A, BOJARS U, et al. Towards semantically-interlinked online communities[M]. Berlin: Springer Berlin Heidelberg, 2005: 500-514.
[28] DENG Q, LI Z, ZHANG X, et al. Interaction-based social relationship type identification in microblog[M] //Behavior and social computing.Cham: Springer International Publishing, 2013: 151-164.
[29] 毛佳昕, 刘奕群, 张敏,等. 基于用户行为的微博用户社会影响力分析[J]. 计算机学报, 2014(4):791-800.
[30] WANG Y, LI L, LIU G. Social context-aware trust inference for trust enhancement in social network based recommendations on service providers[J]. World Wide Web-Internet and Web information systems, 2015, 18(1):1-26.
[31] RABBOU D A, MTIBAA A, HARRAS K A. SCOUT:social context-aware ubiquitous system[C] //2012 5th international conference on new technologies, mobility and security(NTMS).New York: IEEE, 2012: 1-6.
[32] HOGG T, LERMAN K, SMITH L M. Using stochastic models to predict user response in social media[C] //2013 international conference on social computing (SocialCom).New York: IEEE, 2013:63-68.
[33] LEVITAN L, WRONSKI J. Social context and information seeking:examining the effects of network attitudinal composition on engagement with political information[J]. Political behavior, 2013, 36(4):793-816.
[34] YAKOUB F, ZEIN M, YASSER K, et al. Predicting personality traits and social context based on mining the smartphones SMS data[M] //Intelligent data analysis and applications.Cham: Springer International Publishing, 2015.
[35] 蒋侃, 唐竹发. 微博情境下网络舆情关键节点识别及扩散模式分析[J]. 图书情报工作, 2015,59(20):105-111.
[36] CONLON S J, ABRAHAMS A S, SIMMONS L L. Terrorism information extraction from online reports[J]. Journal of computer information systems, 2015, 55(3):20-28.
[37] AGARWAL V, BHARADWAJ K K. A collaborative filtering framework for friends recommendation in social networks based on interaction intensity and adaptive user similarity[J]. Social network analysis & mining, 2013, 3(3):359-379.
[38] 唐文, 胡建斌, 陈钟. 基于模糊逻辑的主观信任管理模型研究[J]. 计算机研究与发展, 2005, 42(10):1654-1659.
[39] LYU C H, CHOI M S, LI Z Y, et al. Reasoning with imprecise context using improved Dempster-Shafer theory[C] //Proceedings of the 2010 IEEE/WIC/ACM international conference on Web intelligence and intelligent agent technology.Washington: IEEE Computer Society, 2010:475-478.
[40] OLIVER B, CROWLEY J L, PATRICK R. Learning situation models in a smart home[J].IEEE transactions on systems man & cybernetics, part B:cybernetics, 2009, 39(1):56-63.
[41] KABIR M A, HAN J, YU J, et al. Inferring user situations from interaction events in social media[J]. The computer journal, 2015,58(9):2026-2043.
[42] BURIANO L. Exploiting social context information in context-aware mobile tourism guides[EB/OL].[2015-12-03]. http://hcilab.uniud.it/sigchi/doc/Virtuality06/Buriano.pdf.
[43] MIZZARO S, VASSENA L. A social approach to context-aware retrieval[J]. World Wide Web-Internet and Web information systems, 2011, 14(4):377-405.
[44] JIANG M, CUI P, WANG F, et al. Scalable recommendation with social contextual information[J]. IEEE transactions on knowledge and data engineering, 2014, 26(11):2789-2802.
[45] VOLKOVA S, VAN DURME B. Online Bayesian models for personal analytics in social media[C] //Proceedings of the 29th AAAI conference on artificial intelligence. Palo Alto: AAAI, 2015: 2325-2331.
[46] CARMINATI B, FERRARI E, PEREGO A. Rule-based access control for social networks[M]. Berlin: Springer Berlin Heidelberg, 2006:1734-1744.
[47] CARMINATI B, FERRARI E, HEATHERLY R, et al. A semantic Web based framework for social network access control[C] //Proceedings of the 14th ACM symposium on access control models and technologies.New York:ACM, 2009:177-186.
[48] KAYES I, IAMNITCHI A. Aegis:a semantic implementation of privacy as contextual integrity in social ecosystems[C] //Proceedings of the 11th annual international conference on privacy, security and trust (PST).New York: IEEE, 2013:88-97.
[49] GOTTRON T, KÖRNER M, et al. Context analysis methods and context aggregation[EB/OL].[2016-01-05]. http://revealproject.eu/wp-content/uploads/D4.2-Context-Analysis-Methods-and-Context-Aggregation.pdf.
[50] CHABRIDON S, LABORDE R, DESPRATS T, et al. A survey on addressing privacy together with quality of context for context management in the Internet of Things[J]. Annals of telecommunications, 2014, 69(1/2): 47-62.
[51] GROENEWEGEN P, MOSER C. Online communities:challenges and opportunities for social network research[J]. Research in the sociology of organizations, 2014, 40:459-473.

Outlines

/