Library and Information Service >
Research on Preference Relation Between Users and Tags Based on Correspondence Analysis
Received date: 2016-03-29
Revised date: 2016-05-24
Online published: 2016-06-05
[Purpose/significance] Users' cognition can influence the potential relationship between objective knowledge. The research on preference relation between users and tags is helpful to reveal the relationship and rule mode of interaction between cognition and knowledge, and provide a reference for knowledge organization under the human impact. [Method/process] The "tag-user" 2-mode network is constructed based on affiliation of tags and users.With multivariate correspondence analysis method, the preference relations between users and tags are analyzed based on distance and position in joint space. [Result/conclusion] The results show that the preference relations between users and tags are related with the position in joint space and centrality in 2-mode network, there is no the phenomenon of group polarization about preference, the scientificity of group decision-making can be guaranteed.
Key words: Folksonomy; preference relation; correspondence analysis; complex network
Teng Guangqing, Chen Si, Chang Zhiyuan, Jiang Bo, Liu Yashu, Zhao Runan, Zhang Libiao . Research on Preference Relation Between Users and Tags Based on Correspondence Analysis[J]. Library and Information Service, 2016 , 60(11) : 120 -127 . DOI: 10.13266/j.issn.0252-3116.2016.11.017
[1] WEINBERGER D. 新数字秩序的革命[M]. 张岩, 译. 北京: 中信出版社, 2008.
[2] POPPER K. 客观的知识:一个进化论的研究[M]. 舒炜光, 卓如飞, 梁咏新,等译. 杭州: 中国美术学院出版社, 2003: 109-153.
[3] TONKIN E. Searching the long tail: hidden structure in social tagging[J]. Advances in classification research online, 2006, 17(1): 1-10.
[4] SHEPITSEN A, GEMMELL J, MOBASHER B, et al. Personalized recommendation in social tagging systems[C]//PU P, BRIDGE D, MOBASHER B, et al.Proceedings of the 2008 ACM conference on recommender systems. New York: ACM, 2008: 259-266.
[5] UDDIN M N, DUONG T H, NGUYEN N T, et al. Semantic similarity measures for enhancing information retrieval in folksonomies[J]. Expert systems with applications, 2013, 40(5): 1645-1653.
[6] LEWIS T G. 网络科学:原理与应用[M]. 陈向阳, 巨修炼,等译. 北京: 机械工业出版社, 2011: 1-14.
[7] HEYMANN P, GARCIA-MOLINA H. Collaborative creation of communal hierarchical taxonomies in social tagging systems[EB/OL]. [2016-03-15]. http://ilpubs.stanford.edu:8090/775/1/2006-10.pdf.
[8] CATTUTO C. Emergent community structure in social tagging systems[J]. Advances in complex systems, 2008, 11(4): 597-608.
[9] RUSSELL T. Contextual authority tagging: cognitive authority through folksonomy[EB/OL]. [2016-03-08]. http://www.terrellrussell.com/projects/contextualauthortytagging/conauthtag200505.pdf.
[10] GLEICK J. 信息简史[M]. 高博, 译. 北京: 人民邮电出版社, 2013: 265-279.
[11] PETERS I, STOCK W G. Folksonomy and information retrieval[J]. Proceedings of the American Society for Information Science and Technology, 2007, 44(1): 1-28.
[12] MATHES A. Folksonomies-cooperative classification and communication through shared meadata[EB/OL]. [2016-03-08]. http://adammathes.com/academic/computer-mediated-communication/folksonomies.pdf.
[13] MAS M D. Intelligent interface architectures for folksonomy driven structure network[C]// BAROLLI L, XHAFA F, VITABILE S, et al.Proceeding of the sixth international conference on Complex, intelligent and software intensive systems. Washington DC: IEEE Computer Society, 2012: 519-525.
[14] 熊回香, 王学东. 大众分类体系中标签与本体的映射研究[J]. 情报科学, 2014, 32(3): 121-126.
[15] 邰杨芳, 贾君枝, 贺培风. 基于受控词表的Folksonomy优化系统分析与设计[J]. 情报科学, 2014, 32(2): 112-117.
[16] 张艳桃, 王国胤, 于洪. 面向Folksonomy的用户兴趣相似性度量方法[J]. 南京大学学报(自然科学), 2013, 49(5): 588-595.
[17] 滕广青, 贺德方,彭洁,等. 基于"用户-标签"关系的社群知识自组织研究[J]. 图书情报工作, 2014, 58(20): 106-111.
[18] 邓三鸿, 刘齐进, 夏立新. 博物馆中面向图像需求表达的标签分类研究[J]. 图书情报工作, 2016, 60(2): 14-21.
[19] HU C, RACHERLA P. Visual representation of knowledge networks: a social network analysis of hospitality research domain[J]. International journal of hospitality management, 2008, 27(2): 302-312.
[20] 滕广青, 姜航. 社群用户信息决策中级联效应判识的修正[J]. 情报科学, 2013, 31(1): 106-110, 117.
[21] SUROWIECKI J. 群体的智慧:如何做出最聪明的决策[M]. 王宝泉, 译. 北京: 中信出版社, 2010: 197-215.
[22] FISHER L. 完美的群体:如何掌控群体智慧的力量[M]. 邓逗逗, 译. 杭州: 浙江人民出版社, 2013: 13-34.
/
〈 | 〉 |