[Purpose/significance] Aiming at the Chinese customer reviews on the Internet,the paper gives a review credibility ranking model,for auxiliary consumer decision making.[Method/process] From two aspects of the features of form and content on online reviews,extracts seven index attributes effecting the usefulness of online reviews and gives a quantitative calculation. Using the fuzzy analytic hierarchy process to determine the index weight,with the improved TOPSIS analysis method to construct the online reviews useful computation and sorting,online reviews credibility index system and ranking model is constructed.[Result/conclusion] Compared with the original review of the website,the review of the model is more scientific and reasonable, providing a kind of confidence ranking method for the Chinese Web customer reviews to provide a balanced review of the objective information and semantic features.
Zhang Yanfeng
,
Li He
,
Zhai Qian
,
Peng Lihui
. Research on the Usefulness of Online Review Based on Fuzzy TOPSIS Analysis: A Case Study of Amazon's Mobile Phone Review[J]. Library and Information Service, 2016
, 60(13)
: 109
-117,125
.
DOI: 10.13266/j.issn.0252-3116.2016.13.014
[1] CIC.洞察网络口碑白皮书系列[EB/OL].[2016-02-08].Http://www.Slideshare.Net/CIC_China_1601270.
[2] MUDAMBI S M,SCHUFF D.What makes a helpful online review? A study of customer reviews on amazon.com[J].MIS quarterly,2010,34(1):185-200.
[3] LIU Y,HUANG X J.Modeling and predicting the helpfulness of online reviews[C]//Proceedings of the 8th IEEE international conference on data mining.Pisa:IEEE,2008:443-452.
[4] CHIEN C,TSENG Y.Quality evaluation of product reviews using an information quality framework[J].Decision support systems,2011,50(4):755-768.
[5] 殷国鹏,刘雯雯,祝珊.网络社区在线评论有用性影响模型研究——基于信息采纳与社会网络视角[J].图书情报工作,2012,56(16):140-147.
[6] JINDAL N,LIU B.Opinion spam and analysis[C]//Proceedings of international conference on Web search and Web data mining.New York:ACM,2008:219-229.
[7] LAU R,LIAO S,XU K.An empirical study of online consumer review spam:a design science approach[C]//Proceedings of the 31st international conference on information systems.St.Louis:Accociation of Information Systems,2010.
[8] LIU J,CAO Y,LIN C,et al.Low-quality product review detection in opinion summarization[C]//Proceedings of the 2007 joint conference on empirical methods in natural language processing and computational natural language learning.Prague:Assaciation for Computational Linguistics,2007:334-342.
[9] 李霄,丁晟春.垃圾商品评论信息的识别研究[J].现代图书情报技术,2013(1):63-68.
[10] 游贵荣,吴为,钱沄涛.电子商务中垃圾评论检测的特征提取方法[J].现代图书情报技术,2014(10):93-100.
[11] 蔡晓珍,徐健,吴思竹.面向情感分析的用户评论过滤模型研究[J].现代图书情报技术,2014(4):58-64.
[12] 吕韶华,杨亮,林鸿飞.基于LDA模型的餐馆评论排序[J].计算机工程,2011(10):62-64,67.
[13] 黄婷婷,曾国荪,熊焕亮.基于商品特征关联度的购物客户评论可信排序方法[J].计算机应用,2014,34(8):2322-2327,2341.
[14] 王倩倩.一种在线商品评论信息可信度的排序方法[J].情报杂志,2015,34(3):181-185.
[15] 郭顺利,张向先,李中梅.面向用户信息需求的移动O2O在线评论有用性排序模型研究——以美团为例[J].图书情报工作,2015,59(12):85-93.
[16] CLEMONS E,GAO G,HITT L.When online reviews meet hyperdifferentiation:a study of the craft beer industry[J].Journal of management information systems,2006,23(2):149-171.
[17] ZHANG Z.Weighing stars:aggregating online product reviews for intelligent e-commerce applications[J].IEEE intelligent systems,2008,23(5):42-49.
[18] ZHANG K,CHENG Y,LIAO W,et al.Mining millions of reviews:a technique to rank products based on importance of reviews[C]//Proceedings of the 13th international conference on electronic commerce.New York:ACM,2011:1-8.
[19] 张吉军.模糊层次分析法(FAHP)[J].模糊系统与数学,2000,14(2):80-88.
[20] 司守奎,孙玺菁.数学建模算法与应用[M].北京:国防工业出版社,2011(8):346-351.
[21] 中国电子商务研究中心.2014年度中国电子商务市场数据检测报告[EB/OL].[2016-03-25].http://www.100ec.cn/zt/upload_data/20150408.pdf.
[22] GooSeeker.MetaSeeker[EB/OL].[2016-04-11].http://www.gooseeker.com/product.