Library and Information Service >
Study on Cognitive Distance of View Metering Among the Audiences of Online Public Opinion
Received date: 2016-07-03
Revised date: 2016-10-04
Online published: 2016-10-20
[Purpose/significance] In order to provide innovative solution to mass emergencies, this paper quantitatively reveals the cognitive distance and sentiment belonging among audiences of network public opinion, and clarifies causes of their sentiment tendency. [Method/process] First,subtopics of public opinion are split. Then, polar intensity of audiences' opinion is calculated through emotional ontology and 1-model matrix and 2-model matrix are built. Further more, visualization map in complicated network is used to visually depict the cognitive distance among the public. The mutual exclusion and coupling mechanism of the audiences' opinion are stated from the perspective of online public opinion field,describing the forming process of sentiment tendency.[Result/conclusion] This paper distinguishes different types of audiences in the whole cognitive network, reveals functional features of field force in the real network situation,and provides a practical starting point to guide the network audience.
Gao Junfeng , Song Shaocheng . Study on Cognitive Distance of View Metering Among the Audiences of Online Public Opinion[J]. Library and Information Service, 2016 , 60(20) : 77 -85 . DOI: 10.13266/j.issn.0252-3116.2016.20.010
[1] SUNSTEIN C R.The law of group polarization[J].Journal of political philosophy,2002,10(2):175-195.
[2] SIA C, Tan B C Y, WEI K. Group polarization and computer mediated communications:effects of communication cues,social presenceand anonymity[J].Information systems research,2002,13(1):70-90.
[3] 史波.网络舆情群体极化的动力机制与调控策略研究[J].情报杂志,2010,29(7):50-53.
[4] 沈超,朱庆华,沈洪洲.网络谣言传播中群体态度演变研究[J].现代图书情报技术,2016(6):37-45.
[5] 吴鹏,杨爽,张晶晶,等.突发事件网络舆情中网民群体行为演化的Agent建模与仿真研究[J].现代图书情报技术,2015(7/8):65-72.
[6] 杜杨沁,霍有光,锁志海.基于分位数回归的网络群体极化度量[J].图书情报工作,2011,55(24):38-43.
[7] 胡改丽,陈婷,陈福集.基于社会网络分析的网络热点事件传播主体研究[J].情报杂志,2015(1):127-133.
[8] NEKOVE M,MORENO Y,G BIANCONL,et al.Theory of rumour spreading in complex social network[J].Physica a statistical mechanics & its application,2008,374(1):457-470.
[9] ZHOU T,LIU J G,BAI W J,et al. Behaviors of susceptible-infected epidemics on scale-free networks with identical infectivity[J].Physical review E,2006,74(5):1-6.
[10] 魏静,朱恒民,宋瑞晓.个体视角下的网络舆情传递链路预测分析[J].现代图书情报技术,2016(1):55-64.
[11] 田依林,辛立艳,张宏伟. 突发事件信息传播中的网络信源地位关系研究[J].情报科学,2014(7):59-65.
[12] DING Z, JIA Y, ZHOU B, et al. Mining topical influencers based on the multi-relational Network in micro-blogging sites[J]. Communications, 2013, 10(1):93-104.
[13] BLISS C A,KLOUMANN I M, Harris K D, et al. Twitter reciprocal reply networks exhibit assortativity with respect to happiness[J].Journal of computational science, 2012,3(5):388-397.
[14] HYLANDER,INGRID G,GUNILLA. Misunderstanding of out-group behaviour:different interpretations of the same crowd events among police officers and demonstrators[J].Nordic psychology,2010,62(4):25-47.
[15] VANEN K,TESSA N,COMIJ S,et al. Classification models for identification of at-risk groups for incident memory complaints[J].International Psychogeriatrics,2014,26(2):256-271.
[16] 勒温.人格的动力理论[M].王思明,叶鸣铉,译.人格的动力理论[M].北京:北京理工大学出版社,2014.
[17] MALETZKE G.Psychology of mass communicate[M].Hamburg:Verlag Hans Bredow Institute,1978.
[18] 高俊峰,李欣,宋绍成. 可视化信息导航中用户的完形认知心理研究[J].情报理论与实践,2015(2):55-58.
[19] McPHERSON M,SMITH-LOVIN L,COOK J M. Birds of a feather:Homophily in social networks[J]. Annual review of sociology, 2001,27(3):415-444.
[20] Zhang H P, Yu H K, Xiong D Y, et al. HHMM-based Chinese lexical analyzer ICTCLAS[C]//Sighan Workshop on Chinese Language Processing.Association for Computational Linguistics, 2003:758-759.
[21] 高俊峰.基于形式概念分析的开放存取资源组织方法研究[D].长春:吉林大学,2011.
[22] 刘群,李素建.基于《知网》的词汇语义相似度计算[J].中文计算语言学,2002,7(2):59-76.
[23] 徐琳宏,林鸿飞,潘宇.情感词汇本体的构造[J].情报学报,2008,27(2):180-185.
[24] 沃瑟曼,福斯特.社会网络分析:方法与应用[M].陈禹,孙彩虹,译. 北京:中国人民大学出版社,2011.
[25] 俞国良.社会心理学[M].北京:北京师范大学出版社,2006.
/
〈 |
|
〉 |