Library and Information Service >
A Review on Knowledge Aggregation
Received date: 2016-08-01
Revised date: 2016-10-16
Online published: 2016-11-05
[Purpose/significance] Knowledge aggregation has become a research hotspot in Library and Information Science in recent years. Through a review and analysis to concept, methods and applications of knowledge aggregation, this paper proposes the future trend to lay a foundation for further research.[Method/process] Compared with some relative concept, this paper thinks knowledge aggregation is a new direction of knowledge organization, and it contributes to the realization of knowledge service based on user demand. Then, this paper respectively introduces the methods and the applications of knowledge aggregation. There are four methods used in the analysis:based on information retrieval language, based on knowledge network, based on semantic web, and based on the topic. The applications include knowledge acquisition, knowledge recommendation and knowledge discovery. [Result/conclusion] It proposes that the future research should enrich the empirical study on different data levels, focus on the fusion of methods, and enhance the service innovation in the big data environment.
Li Yating . A Review on Knowledge Aggregation[J]. Library and Information Service, 2016 , 60(21) : 128 -136 . DOI: 10.13266/j.issn.0252-3116.2016.21.017
[1] 毕强. 数字资源:从整合到聚合的转变[J]. 数字图书馆论坛,2014(6):1.
[2] 赵雪芹. 知识聚合与服务研究现状及未来研究建议[J].情报理论与实践,2015,38(2):132-135.
[3] 邱均平, 余厚强. 知识科学视角下国际知识融合研究进展与趋势[J]. 图书情报工作,2015,59(8):126-132.
[4] 唐晓波, 魏巍. 知识融合:大数据时代知识服务的增长点[J]. 图书馆学研究,2015(5):8-14.
[5] PREECE A, HUI K, GRAY A, et al. Designing for scalability in a knowledge fusion system[J]. Knowledge-based Systems,2001,14(3):173-179.
[6] 陈力, 鲁若愚. 企业知识整合研究[J]. 科研管理,2003,24(3):32-38.
[7] 付立宏. 基于知识管理的图书馆知识整合策略[J]. 中国图书馆学报,2006,32(4):43-46.
[8] BOER M D, BOSCH F A J V D, VOLBERDA H W. Managing organizational knowledge integration in the emerging multimedia complex[J]. Journal of management studies, 1999, 36(3):379-398.
[9] 任皓, 邓三鸿. 知识管理的重要步骤——知识整合[J]. 情报科学,2002,20(6):650-653.
[10] 赵蓉英, 王嵩, 董克. 国内馆藏资源聚合模式研究综述[J]. 图书情报工作,2014,58(18):138-143.
[11] 贯君, 毕强, 赵夷平. 基于关联数据的知识聚合与发现研究进展[J]. 情报资料工作,2015(3):15-21.
[12] 张海涛, 张连峰, 王丹,等. 基于自组织神经网络的图书馆关联知识聚合研究[J]. 情报理论与实践,2015,38(9):73-78.
[13] 董克, 程妮, 马费成. 知识计量聚合及其特征研究[J]. 情报理论与实践,2016,39(6):47-51.
[14] 马鸿佳, 李洁, 沈涌. 数字资源聚合方法融合趋势研究[J]. 情报资料工作,2015(5):24-29.
[15] 毕强, 尹长余, 滕广青,等. 数字资源聚合的理论基础及其方法体系构建[J]. 情报科学, 2015, 33(1):9-14,24.
[16] 张琪玉. 情报检索语言[M]. 武汉:武汉大学出版社,1983.
[17] ABEL F, MARENZI I, NEJDL W, et al. Sharing distributed resources in LearnWeb2.0[J]. Lecture notes in computer science,2009,5794:154-159.
[18] 黄文碧. 基于元数据关联的馆藏资源聚合研究[J]. 情报理论与实践,2015,38(4):74-79.
[19] 金晶, 宋敏霞, 徐晨琛,等. 基于主题词表的政务领域本体构建[J]. 图书情报工作,2010,54(8):16-20.
[20] MIKA P. Social networks and the Semantic Web[M]. New York:Springer, 2007.
[21] KIU C C, TSUI E. TaxoFolk:a hybrid taxonomy-folksonomy structure for knowledge classification and navigation[J]. Expert systems with applications, 2011, 38(5):6049-6058.
[22] 毕强, 赵夷平, 孙中秋. 社会化标注系统资源聚合的实证分析[J]. 情报资料工作,2015,36(5):30-37.
[23] 王传清, 毕强. 超网络视域下的数字资源深度聚合研究[J]. 情报学报,2015(1):4-13.
[24] 邱均平, 刘国徽, 董克. 基于合作分析的知识聚合与学科知识结构研究——以国内知识管理领域为例[J]. 情报理论与实践,2014,37(8):6-11.
[25] LI S, SUN Y, SOERGEL D. A new method for automatically constructing domain-oriented term taxonomy based on weighted word co-occurrence analysis[J]. Scientometrics, 2015,103(3):1023-1042.
[26] 王忠义, 谭旭, 夏立新. 共词分析方法的细粒度化与语义化研究[J]. 情报学报,2014(9):969-978.
[27] DIND Y, ZHANG G, CHAMBERS T, et al. Content-based citation analysis:the next generation of citation analysis[J]. Journal of the American Society for Information Science & Technology, 2015,151(11):2244-2248.
[28] BERNERS-LEE T, HENDLER J, LASSILA O, et al. The Semantic Web:a new form of Web content that is meaningful to computers will unleash a revolution of new possibilities[J]. Scientific American,2001,284(5):34-43.
[29] BIZER C, KAI E, MEUSEL R, et al. Deployment of RDFa, microdata, and microformats on the Web-aquantitative analysis[M]//The Semantic Web-ISWC 2013. Heidelberg:Springer Berlin Heidelberg,2013:17-32.
[30] STEPHENS S, LAVIGNA D, DILASCIO M, et al. Aggregation of bioinformatics data using Semantic Web technology[J]. Web semantics:science services & agents on the World Wide Web,2006,4(3):216-221.
[31] ANDERLIK S, NEUMAYR B, SCHREFL M. Using domain ontologies as semantic dimensions in data warehouses[M]//Conceptual Modeling. Berlin:Springer Berlin Heidelberg,2012:88-101.
[32] 张敏, 王丹. 基于微格式的用户生成内容聚合组织研究[J]. 情报理论与实践,2014,37(8):122-127.
[33] 何超, 张玉峰. 基于本体的馆藏数字资源语义聚合与可视化研究[J]. 情报理论与实践,2013,36(10):73-76.
[34] DING L, LEBO T, ERIKSON J S, et al. TWC LOGD:a portal for linked open government data ecosystems[J]. Web semantics:science services & agents on the World Wide Web,2011,9(3):325-333.
[35] 游毅, 成全. 试论基于关联数据的馆藏资源聚合模式[J]. 情报理论与实践,2013,36(1):109-114.
[36] BOYACK K W, NEWMAN D, DUHON R J, et al. Clustering more than two million biomedical publications:comparing the accuracies of nine text-based similarity approaches[J]. PLOS one,2011,6(3):1451-1454.
[37] 王学东, 胡宋敏, 谢辉,等. 多模态网络主题资源聚合与实证研究[J]. 情报科学,2014,32(7):9-13.
[38] 胡海波. Web3.0环境下基于用户兴趣的信息聚合服务[J]. 情报理论与实践,2014,37(8):117-121.
[39] BLEI D M, LAFFERTY J D. A correlated topic model of science[J]. Statistics,2007,1(1):17-35.
[40] ROSEN-ZVI M, GRIFFITHS T, STRYVERS M, et al. The author-topic model for authors and documents[C]//Conference on uncertainty in artificial intelligence. Corvallis:AUAI Press,2012:487-494.
[41] 商任翔. 基于主题模型的中医药隐含语义信息挖掘[D]. 杭州:浙江大学,2013.
[42] DE A, DIAZ E, RAGHAVAN V V. Search engine result aggregation using analytical hierarchy process[C]//2010 IEEE/WIC/ACM international conference on Web intelligence and intelligent agent technology. Los Alamitos:IEEE Computer Society,2010:300-303.
[43] MU T, GOULERMAS J Y, KORKONTZELOS I, et al. Descriptive document clustering via discriminant learning in a co-embedded space of multilevel similarities[J]. Journal of the Association for Information Science & Technology,2016,67(1):106-133.
[44] 贺德方, 曾建勋. 基于语义的馆藏资源深度聚合研究[J]. 中国图书馆学报,2012,38(4):79-87.
[45] 曹倩, 赵一鸣. 知识图谱的技术实现流程及相关应用[J]. 情报理论与实践,2015,38(12):127-132.
[46] PURWITASARI D, OKAZAKI Y, WATANABE K. Data mining for navigation generating system with unorganized Web resources[J]. Lecture notes in computer science,2008,5177:598-605.
[47] 廖晓锋, 王永吉, 周津慧,等. 一种领域专家文献自动收集系统[J]. 计算机系统应用,2012,21(6):115-120.
[48] 王伟, 许鑫. 融合关联数据和分众分类的徽州文化数字资源多维度聚合研究[J]. 图书情报工作,2015,59(14):31-36.
[49] MARTINEZ-ROMO J, ARAUJO L, FERNANDEZ A D. SemGraph:extracting keyphrases following a novel semantic graph-based approach[J]. Journal of the Association for Information Science & Technology, 2016,67(1):71-82.
[50] LIU J. Information diversity in Web search[D]. Illinois:Northwestern University,2009.
[51] MA F, LI Y. Utilising social network analysis to study the characteristics and functions of the co-occurrence network of online tags[J]. Online information review,2014,38(2):232-247.
[52] XU H, YUAN H, MA B, et al. Where to go and what to play:towards summarizing popular information from massive tourism blogs[J]. Journal of information science,2015,41(6):830-854.
[53] ZHANG Z K, ZHOU T, ZHANG Y C. Personalized recommendation via integrated diffusion on user-item-tag tripartite graphs[J]. Physica A:statistical mechanics & its applications,2010,389(1):179-186.
[54] 陈毅波. 基于关联数据和用户本体的个性化知识服务关键技术研究[D]. 武汉:武汉大学,2012.
[55] 李星星. 馆藏资源深度聚合及应用研究[D]. 武汉:华中师范大学,2013.
[56] WENZEL F, KIEβLING W. Aggregation and analysis of enriched spatial user models from location-based social networks[C]//The workshop on managing & mining enriched geo-spatial data. New York:ACM,2014:1-6.
[57] FAYYAD U, PIATETSKY-SHAPIRO G, SMYTH P. From data mining to knowledge discovery in databases[J]. AI magazine,1996,17(3):37-54.
[58] SWANSON D R, SMALHEISER N R, BOOKSTEIN A. Information discovery from complementary literatures:categorizing viruses as potential weapons[J]. Journal of the American Society for Information Science & Technology,2001,52(10):797-812.
[59] SONG M, HEO G E, DING Y. SemPathFinder:semantic path analysis for discovering publicly unknown knowledge[J]. Journal of informetrics,2015,9(4):686-703.
[60] 李楠, 孙济庆, 吉久明,等. 基于术语语义相关的知识关联方法研究[J]. 情报学报,2015(6):608-615.
[61] VARSHNEY L R, PINEL F, VARSHNEY K R, et al. A big data approach to computational creativity[J]. Computer science,2013(11):1-16.
[62] SPANGLER S, WIKINS A D, BACHMAN B J, et al. Automated hypothesis generation based on mining scientific literature[C]//ACM SIGKDD international conference on knowledge discovery and data mining. New York:ACM,2014:1877-1886.
[63] SILVA T, WUWONGSE V, SHARMA H N. Disaster mitigation and preparedness using linked open data[J]. Journal of ambient intelligence & humanized computing,2012,4(5):591-602.
[64] 洪娜, 钱庆, 范炜,等. 关联数据中关系发现的可视化实践[J]. 现代图书情报技术,2013(2):11-17.
[65] CLARKE A, STEELE R. Smartphone-based public health information systems:anonymity, privacy and intervention[J]. Journal of the Association for Information Science & Technology,2015,66(12):2596-2608.
[66] 钱庆. 精准医学相关的数据管理与知识服务[J]. 情报工程, 2015,1(6):17-22.
[67] 化柏林, 李广建. 大数据环境下多源信息融合的理论与应用探讨[J]. 图书情报工作,2015,59(16):5-10.
[68] 曹树金, 马翠嫦. 信息聚合概念的构成与聚合模式研究[J]. 中国图书馆学报,2016,42(3):4-19.
[69] 马翠嫦, 曹树金, 郑建瑜. 多学科领域视角下网络聚合单元概念框架构建研究[J]. 情报科学,2015,33(10):16-22.
[70] SPECIA L, MOTTA E. Integrating folksonomies with the Semantic Web[J]. Lecture notes in computer science,2007,4519:624-639.
[71] 邱均平, 王菲菲. 数字文献资源语义化计量本体的提出与构建[J]. 情报学报, 2014(10):1012-1021.
[72] 夏立新, 陈晨, 王忠义. 基于多维度聚合的网络资源知识发现框架研究[J]. 情报科学,2016(5):3-8.
/
〈 |
|
〉 |