Interdisciplinary Topic Detection Method and Empirical Research Based on Topic Correlation Analysis: A Case Study of Animal Resource and Breeding

  • Wu Lei ,
  • Tian Ruya ,
  • Zhang Xuefu
Expand
  • Agricultural Information Institute of Chinese Academy of Agricultural Sciences, Beijing 100081

Received date: 2016-05-19

  Revised date: 2016-11-25

  Online published: 2017-01-05

Abstract

[Purpose/significance] This paper aims at the problems of the single and double disciplines topic detection which cannot show the source of topics, proposes a multi-disciplinary topic detection method, and provides the basis for the development and cooperation of the interdisciplinary.[Method/process] Firstly, this paper extracts the shared topics and the domain-specific topics from two heterogeneous disciplines and their interdisciplinary using the topic correlation analysis method. Secondly, it quantifies the correlation of domain-specific topics using the correlation measures. Finally, the paper analyzes shared topics and similar domain-specific topics.[Result/conclusion] The experimental results on the agriculture and reproductive biology, the veterinary and the interdisciplinary in the field of the animal resource and breeding show the proposed method effectively detects the source of topics.

Cite this article

Wu Lei , Tian Ruya , Zhang Xuefu . Interdisciplinary Topic Detection Method and Empirical Research Based on Topic Correlation Analysis: A Case Study of Animal Resource and Breeding[J]. Library and Information Service, 2017 , 61(1) : 72 -79 . DOI: 10.13266/j.issn.0252-3116.2017.01.009

References

[1] KLEIN J T. The discourse of interdiciplinarity:perspectives from the "handbook of the undergraduate curriculum."[J]. Liberal education, 1998, 84(3):4-11.
[2] 王平. 基于层次概率主题模型的科技文献主题发现及演化[J]. 图书情报工作, 2014, 58(22):70-77.
[3] KOLLAR D, FRIEDMAN N. Probabilistic graphical models principles and techniques[M]. Cambridge:The MIT Press, 2009:713-715.
[4] LI L, JIN X, LONG M. Topic correlation analysis for cross-domain text classification[C]//AAAI Conference on Artificial Intelligence. Toronto:AAAI, 2012.
[5] POTAPENKO A, VORONTSOV K. Robust PLSA performs better than LDA[M]//Advances in information retrieval. Berlin:Springer, 2013:784-787.
[6] 杨良斌, 金碧辉. 跨学科研究中学科交叉度的定量分析探讨[J]. 情报杂志, 2009, 28(4):39-43.
[7] MORILLO F, BORDONS M, GOMEZ I. An approach to interdisciplinarity through bibliometric indicators[J]. Scientometrics, 2001, 51(1):203-222.
[8] SANZ-MENENDEZ L, BORDONS M, ZULUETA M A. Interdisciplinarity as a multidimensional concept:its measure in three different research areas[J]. Research evaluation, 2001, 10(1):47-58.
[9] SCHUMMER J. Multidisciplinarity, interdisciplinarity, and patterns of research collaboration in nanoscience and nanotechnology[J]. Scientometrics, 2004, 59(3):425-465.
[10] 谭焱桐,邓小昭. 跨学科信息查寻行为研究文献综述[J]. 图书情报工作, 2015, 59(16):135-142.
[11] 闵超, 孙建军. 学科交叉研究热点聚类分析[J]. 图书情报工作, 2014, 58(1):109-116.
[12] 杨良斌. 跨学科指标测度的数据集构建及数据预处理研究[J]. 图书情报工作, 2013, 57(11):90-95.
[13] JONES P C, MERRITT J Q. Critical thinking and interdisciplinarity in environmental higher education:the case for epistemological and values awareness[J]. Journal of geography in higher education, 1999, 23(3):349-357.
[14] 赵琦, 张智雄, 孙坦, 等. 主题发现技术方法研究[J]. 情报理论与实践, 2009 (4):104-108.
[15] 范云满,马建霞.基于LDA与新兴主题特征分析的新兴主题探测研究[J].情报学报,2014,33(7):698-711.
[16] 黄鲁成,唐月强,吴菲菲,等.基于文献多属性测度的新兴主题识别方法研究[J].科学学与科学技术管理,2015(2):34-43.
[17] 唐晓波,房小可. 基于文本聚类与LDA相融合的微博主题检索模型研究[J]. 情报理论与实践, 2013 36(8):85-90.
[18] 郭卫宁, 司莉. 国内非相关文献知识发现研究综述[J]. 图书情报知识, 2013(6):97-105.
[19] ZHANG Y, HU X, LI P, et al. Cross-domain sentiment classification-feature divergence, polarity divergence or both?[J]. Pattern recognition letters, 2015, 65(C):44-50.
[20] MOREO F A, ESULI A, SEBASTIANI F. Distributional correspondence indexing for cross-lingual and cross-domain sentiment classification[J]. Journal of artificial intelligence research, 2016(55):131-163.
[21] MANNING C D, SCHUTZE H. Foundations of statistical natural language processing[M]. Cambridge:MIT Press, 1999.
[22] FUGLEDE B, TOPSOE F. Jensen-Shannon divergence and Hilbert space embedding[C]//IEEE international symposium on information theory, Washington:IEEE,2004:31-31.
[23] BENESTY J, CHEN J, HUANG Y, et al. Pearson correlation coefficient[M]//Noise reduction in speech processing, Berlin:Springer, 2009:1-4.
[24] JOPKE C, KREYLING J, MAES J, et al. Interactions among ecosystem services across Europe:Bagplots and cumulative correlation coefficients reveal synergies, trade-offs, and regional patterns[J]. Ecological indicators, 2015, 49(49):46-52.
[25] KULLBACK S, LEIBLER R A. On information and sufficiency[J]. The annals of mathematical statistics, 1951, 22(1):79-86.
[26] BAEZ J C, FRITZ T. A Bayesian characterization of relative entropy[J]. Theory and applications of categories, 2014, 29(16):422-456.
[27] BARTOL T, BUDIMIR G, JUZNIC P, et al. Mapping and classification of agriculture in Web of Science:other subject categories and research fields may benefit[J]. Scientometrics, 2016, 109(2):979-996.
[28] 薛晓丽, 武夷山. 跨学科研究的文献计量及可视化分析[J]. 情报杂志, 2014, 33(7):122-127.
[29] 刘琳. 畜牧学与兽医学学科发展报告[J]. 中国家禽, 2008, 30(19):32-38.
[30] 钟崇高.农学初步[M]//简明自然科学向导丛书.济南:山东科学技术出版社, 2013.
[31] 窦肇华.农学生殖生物学[M].北京:人民卫生出版社,2007.
[32] 田艳艳, 霍然, 王红梅, 等. 农学生殖生物学研究的发展及前沿[J]. 科学通报, 2015 (24):2282-2287.
[33] 高作信.兽医学[M].3版.北京:中国农业出版社,2010.

Outlines

/