The Analysis of Niche Experts' “Stability-Change” Feature Under Different Semantic Environments: An Empirical Analysis Based on MetaFilter Dataset

  • Li Gang ,
  • Zhang Yan ,
  • Ye Guanghui
Expand
  • 1. Center for the Studies of Information Resources of Wuhan University, Wuhan 430072;
    2. School of Information Management of Central China Normal University, Wuhan 430079

Received date: 2016-11-01

  Revised date: 2016-12-29

  Online published: 2017-01-20

Abstract

[Purpose/significance] Social media not only provides a platform for knowledge exchange for users, but also forms a channel for knowledge reuse. Some social network users can affect others in information communication and knowledge sharing. These users are called "niche experts". The study of "niche experts" helps to promote information dissemination. [Method/process] In this paper, the authors made use of user activity data from a popular community weblog named MetaFilter to construct social network. Then the authors got the niche experts by network analysis and time series analysis and analyzed the "stability-change" feature of niche experts under different semantic circumstances. The paper also introduced an index to measure this feature and it was proved to be correct. [Result/conclusion] The result of the study shows that only few niche experts can maintain stability under multiple semantic circumstances and the majority of niche experts can maintain stability only under single semantic circumstance.

Cite this article

Li Gang , Zhang Yan , Ye Guanghui . The Analysis of Niche Experts' “Stability-Change” Feature Under Different Semantic Environments: An Empirical Analysis Based on MetaFilter Dataset[J]. Library and Information Service, 2017 , 61(2) : 99 -106 . DOI: 10.13266/j.issn.0252-3116.2017.02.013

References

[1] 孙茜.Web2.0的含义、特征与应用研究[J].现代情报,2006(2):69-70,74.
[2] 韩佳,肖如良,胡耀,等.在线社交网络中信息传播模式的特征分析[J].计算机应用,2013,33(1):105-107,111.
[3] MIKA P, ELFRING T, GROENEWEGEN P. Application of semantic technology for social network analysis in the sciences[J]. Scientometrics, 2006, 68(1):3-27.
[4] SLEEMAN J, FININ T. Computing FOFA co-reference relations with rules and machine learning[C]//Proceedings of the 3rd international workshop on social data on the Web. Hungary:CEUR-WS,2010:595-608.
[5] 叶光辉,李纲.社会语义网络结构分析——以MetaFilter为例[J].情报理论与实践,2015,38(12):57-63.
[6] 李勇军.在线社交网络影响力分析[J].复杂系统与复杂性科学,2012,9(3):22-37.
[7] 吴信东,李毅,李磊.在线社交网络影响力分析[J].计算机学报,2014,37(4):735-752.
[8] 王晓鸥.结合时间因子的社交网络用户影响力分析[D].广州:广东工业大学,2015.
[9] MISLOVE A, KOPPULA H S, GUMMADI K P, et al.Growth of the flickr social network[C]// Proceedings of the 1st ACM SIGCOMMWorkshop on social networks.New York: ACM Press, 2008: 25-30.
[10] 郭碧坚,韩宇.同行评议制:方法,理论,功能,指标[J].科学学研究,1994(3):63-73.
[11] 林鸿飞,王健,熊大平,等.基于类别参与度的社区问答专家发现方法[J].计算机工程与设计,2014,35(1):333-338.
[12] 史玉珍,彭智勇.基于修正h指数的学科领域专家发现的研究[J].计算机工程与应用, 2011,47(29):1-3.
[13] 刘健,李绮,刘宝宏,等.基于话题模型的专家发现方法[J]. 国防科技大学学报,2013, 35(2):127-131.
[14] 李纲,叶光辉,张岩."小众专家"特征识别——基于MetaFilter的实证分析[J].现代图书情报技术,2015(6):71-77.

Outlines

/