Library and Information Service >
Collaborative Recommendation Based on FRUTAI Algorithm for Boolean Mobile Learning Resources
Received date: 2016-11-13
Revised date: 2016-12-13
Online published: 2017-02-05
[Purpose/significance] The research aims to propose a collaborative recommendation method for boolean resource in mobile learning platform.[Method/process] Firstly, the nearest neighbor set of the target users is determined based on FRUTAI algorithm. Secondly, after filling the user data, a collaborative recommendation method for Boolean resource is put forward. Thirdly, the result of the recommendation according to relevant methods is assessed.[Result/conclusion] Empirical results suggest that the recommendation method proposed has a good result by using of Douban as the data set. The improved collaborative recommendation algorithm can be effectively applied to boolean resources in mobile learning platform, and has a perfect effect on recommendation.
Xia Lixin , Bi Chongwu , Cheng Xiufeng . Collaborative Recommendation Based on FRUTAI Algorithm for Boolean Mobile Learning Resources[J]. Library and Information Service, 2017 , 61(3) : 14 -20 . DOI: 10.13266/j.issn.0252-3116.2017.03.002
[1] 孙光福,吴乐,刘淇,等.基于时序行为的协同过滤推荐算法[J].软件学报. 2013(11):2722-2733.
[2] MA H, KING I, LYU M R. Learning to recommend with social trust ensemble[C]//Proceedings of the international ACM SIGIR conference on research and development in information retrieval,Boston:SIGIR, 2009:203-210.
[3] GUO L, MA J, CHEN Z, et al. Learning to recommend with social relation ensemble[C]//Proceedings of the ACM international conference on information and knowledge management. Maui:ACM,2012:2599-2602.
[4] JAMALI M, ESTER M. TrustWalker:a random walk model for combining trust-based and item-based recommendation[C]//Proceedings of the 15th ACM SIGKDD International conference on knowledge discovery and data mining.Paris:ACM, 2009:397-406.
[5] ZHOU T C, MA H, LYU M R, et al. UserRec:auser recommendation framework in social tagging systems[C]//Proceedings of the twenty-fourth AAAI conference on artificial intelligence. Atlanta:AAAI,2010:1486-1491.
[6] WU L, CHEN E, LIU Q, et al. Leveraging tagging for neighborhood-aware probabilistic matrix factorization[C]//Proceedings of the ACMinternational conference on information and knowledge management. Maui:ACM,2012:1854-1858.
[7] NARUCHITPARAMES J, GUNES M H, LOUIS S J. Friend recommendations in social networks using genetic algorithms and network topology[J].Evolutionary Computation, 2011, 47(10):2207-2214.
[8] ZHANG Z, LIU Y, DING W, et al. Proposing a new friend recommendation method, FRUTAI, to enhance social media providers' performance[J]. Decision support systems, 2015, 79(7):46-54.
[9] YANG S H, LONG B, SMOLA A J, et al. Like like alike-joint friendship and interest propagation in social networks[EB/OL].[2016-12-12].http://www.ramb.ethz.ch/CDstore/www2011/proceedings/p537.pdf.
[10] 朱琦. 手机移动学习资源内容设计研究——以《大学英语》课程为例[D]. 沈阳:沈阳师范大学, 2011.
[11] CHIEN S Y. A Content-based recommendation method for browsing guidance in Web-based e-learning system[EB/OL].[2016-10-12].http://ethesys.lib.mcu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0126105-112129.
[12] WANG J, YANG Q, ZHU L, et al. Based on the reinforcement learning association rules recommendation study[C]//Proceedings of the international conference on semantics, knowledge and grid.Washington:IEEE Computer Society,2009:392-395.
[13] NIU W, NIU Z, TANG S, et al. A learning resource recommendation method combining user sequential interaction with collaborative filtering[EB/OL].[2016-12-13].http://www.actapress.com/Abstract.aspx?paperId=456103.
[14] 王忠群,蒋胜,修宇,等. 基于动态标签-资源网络图的信息资源推荐[J].现代图书情报技术, 2015, 31(3):49-57.
[15] HA I A, SONG G S, KIM H N, et al. Collaborative recommendation of online video lectures in e-learning system[J]. Journal of the Korea society of computer and information, 2009, 14(9):3213-3225.
[16] GETOOR L, SAHAMI M, GETOOR L, et al. Using probabilistic relational models for collaborative filtering[C]//The workshop on Web usage analysis and user profiling. 1999:83-96.
[17] UNGAR L H, FOSTER D P. Clustering methods for collaborative filtering[EB/OL].[2017-02-17].http://www.cis.upenn.edu/~ungar/Datamining/Publications/clust.pdf.
[18] HOFMANN T. Collaborative filtering via gaussian probabilistic latent semantic analysi[C]//International Acm Sigir conference on research &development in information retrieval.Toronto:SIGIR,2003:259-266.
[19] LAWRENCE N D, URTASUN R. Non-linear matrix factorization with Gaussian processes[C]//International conference on machine learning. Montreal:ICML,2009:601-608.
[20] KOREN Y. Collaborative filtering with temporal dynamics[J]. Communications of the ACM, 2010, 53(4):89-97.
[21] 张学胜. 面向数据稀疏的协同过滤推荐算法研究[D]. 合肥:中国科学技术大学, 2011.
[22] ZHENG N, SONG S, BAO H. A Temporal-topic model for friend recommendations in Chinese microblogging systems[J]. IEEE transactions onsystems man & cybernetics systems, 2015, 45(9):1245-1253.
[23] HUANG S, ZHANG J, WANG L, et al. Social friend recommendation based on multiple network correlation[J]. IEEE transactions on multimedia, 2016, 18(2):287-299.
[24] OYAMA S, HAYASHI K, KASHIMA H. Cross-temporal link prediction[C]//Proceedings of the 2011 IEEE 11th international conference on data mining. Langkawi:IEEE,2011:1188-1193.
[25] LIU F, HONG J L. Use of social network information to enhance collaborative filtering performance[J]. Expert systems with applications, 2010, 37(7):4772-4778.
[26] CACHEDA F, CARNEIRO V, FEMRNANDEZ D, et al. Comparison of collaborative filtering algorithms:limitations of current techniques and proposals for scalable, high-performance recommender systems[J]. ACMtransactions on the Web,2011, 5(1):161-171.
[27] ZHANG H, SU J. Naive Bayesian classifiers for ranking[J]. Lecture notes in computer science, 2004, 3201:501-512.
[28] 吴昊, 刘东苏. 社交网络中的好友推荐方法研究[J]. 现代图书情报技术, 2015(1):59-65.
/
〈 | 〉 |