Research Review on Fine-grained Sentiment Analysis

  • Tang Xiaobo ,
  • Liu Guangchao
Expand
  • 1. School of Information Management, Wuhan University, Wuhan 430072;
    2. Center for the Study of Information Resources, Wuhan University, Wuhan 430072

Received date: 2016-11-24

  Revised date: 2017-01-22

  Online published: 2017-03-05

Abstract

[Purpose/significance] This paper investigates and summarizes the research progress of fine-grained sentiment analysis, discusses its key issues and key technologies, and points out future research trends. [Method/process] The evolution of coarse-grained sentiment analysis to fine-grained sentiment analysis is described from the perspective of sentiment analysis at different levels of granularity, and the techniques and methods of fine-grained sentiment analysis are classified and summarized using literature research method. [Result/conclusion] This paper summarizes two important issues in fine-grained sentiment analysis, including opinion words extraction and feature extraction. This study will help to understand the key issues and key methods of the fine-grained sentiment analysis.

Cite this article

Tang Xiaobo , Liu Guangchao . Research Review on Fine-grained Sentiment Analysis[J]. Library and Information Service, 2017 , 61(5) : 132 -140 . DOI: 10.13266/j.issn.0252-3116.2017.05.018

References

[1] MOHEY D.A survey on sentiment analysis challenges[EB/OL].[2016-04-26]. http://www.sciencedirect.com/science/article/pii/S1018363916300071.
[2] 林崇德,杨治良,黄希庭. 心理学大辞典[M]. 上海:上海教育出版社,2003.
[3] LIU B. Sentiment analysis and opinion mining[M]. California:Morgan & Claypool Publishers, 2012.
[4] WILSON T, WIEBE J, HOFFMANN P. Recognizing contextual polarity in phrase-level sentiment analysis[C]//Proceedings of the joint conference on human language technology and empirical methods in natural language processing. Vancouver:ACL, 2005:347-354.
[5] VINODHINI G, CHANDRASEKARAN R. Sentiment analysis and opinion mining:a survey[J]. International journal of advanced research in computer science and software engineering, 2012, 2(6):282-292.
[6] CAMBRIA E, SCHULLER B, XIA Y, et al. New avenues in opinion mining and sentiment analysis[J]. IEEE intelligent system, 2013, 28(2):15-21.
[7] FELDMAN R. Techniques and applications for sentiment analysis[J]. Communications of ACM, 2013, 56(4):82-89.
[8] PANG B, LEE L, VAITHYANATHAN S. Thumbs up? sentiment classification using machine learning techniques[C]//Proceedings of the conference on empirical methods in natural language processing. Philadelphia:ACL, 2002:79-86.
[9] TURNEY P. Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews[C]//Proceedings of annual meeting of the Association for Computational Linguistics. Philadelphia:ACL, 2002:417-425.
[10] WIEBE J M, BRUCE R F, O'HARA T P. Development and use of a gold-standard data set for subjectivity classification[C]//Proceedings of the Association for Computational Linguistics. Maryland:ACL, 1999:246-253.
[11] YU H, HATZIVASSILOGLOU V. Towards answering opinion questions:separating facts from opinions and identifying the polarity of opinion sentences[C]//Proceedings of the conference on empirical methods in natural language processing. Sapporo:ACL, 2003.
[12] BARBOSA L, FENG J. Robust sentiment detection on twitter from biased and noisy data[C]//Proceedings of the international conference on computational linguistics. Beijing:COLING, 2010:36-44.
[13] 李刚,程阳阳,寇广增. 句子情感分析及其关键问题[J]. 图书情报工作, 2010, 54(11):104-107,127.
[14] HU M Q, LIU B. Mining and summarizing customer reviews[C]//Proceedings of ACM SIGKDD international conference on knowledge discovery and data mining. Seattle:ACM, 2004:168-177.
[15] GAMON M, AUE A, CORSTON-OLIVER S. Plus:mining customer opinion from free text[C]//Proceedings of the 6th international conference on advances in intelligent data analysis.Madrid:IDA, 2005:121-132.
[16] MCDONALD R, HANNAN K, NEYLON T. Structured models for fine-to-coarse sentiment analysis[C]//Proceedings of annual meeting of the Association for Computational Linguistics. Prague:ACL, 2007:432-439.
[17] 黄胜,Web评论文本的细粒度意见挖掘技术研究[D]. 北京:北京理工大学,2014.
[18] 施寒潇.细粒度情感分析研究[D]. 苏州:苏州大学,2013.
[19] 郭冲,王振宇. 面向细粒度意见挖掘的情感本体树及自动构建[J]. 中文信息学报, 2014, 27(5):75-83, 92.
[20] 张莉,许鑫. 产品评论中的隐式属性抽取研究[J]. 现代图书情报技术, 2015(12):42-47.
[21] HAI Z, CHANG K, KIM J J. Implicit feature identification via co-occurrence association rule mining[C]//Proceedings of the 12th international conference on computational linguistics and intelligent text processing. Tokyo:CICLing, 2011:393-404.
[22] ZHANG L, LIU B. Identifying noun product features that imply opinions[C]//Proceedings of the 49th annual meeting of the Association for Computational Linguistics. Portland:ACL, 2011:575-580.
[23] KAUTER M V, BREESCH D, HOSTE V. Fine-grained analysis of explicit and implicit sentiment in financial news articles[J]. Expert system with applications, 2015, 42(11):4999-5010.
[24] SCHOUTEN K, FRASINCAR F. Survey on aspect-level sentiment analysis[J]. IEEE transactions on knowledge and data engineering, 2016, 28(3):813-830.
[25] MEDHAT W, HASSAN A, KORASHY H. Sentiment analysis algorithms and applications:a survey[J]. Ain Shams engineering journal, 2014, 5(4):1093-1113.
[26] 聂欣慧.基于产品特征的领域情感本体构建及应用研究[D]. 北京:首都师范大学,2014.
[27] RAVI K, RAVI V. A survey on opinion mining and sentiment analysis:tasks, approaches and applications[J]. Knowledge-based systems, 2015, 89(11):14-46.
[28] CRUZ F L, TROYANO J A, ENRIQUEZ F. ‘Long autonomy or long delay?’ the importance of domain in opinion mining[J]. Expert systems with applications, 2103, 40(8):3174-3184.
[29] MOGHADDAM S, ESTER M. Opinion digger:an unsupervised opinion miner from unstructured product reviews[C]//Proceedings of the 19th ACM international conference on information and knowledge management. Manage:ACM, 2010:1825-1828.
[30] ZHU J B, WANG H Z, ZHU M H. Aspect-based opinion polling from customer reviews[J]. IEEE transaction on affective computing, 2011, 2(1):37-49.
[31] LIN C H, HE Y L, EVERSON R. Weakly supervised joint sentiment-topic detection from text[J]. IEEE transactions on knowledge and data engineering, 2012, 24(6):1134-1145.
[32] LIU L H, NIE X H, WANG H S. Toward a fuzzy domain sentiment ontology tree for sentiment analysis[C]//Proceedings of the 5th international congress on image and signal. Chongqing:CISP, 2012:1620-1625.
[33] LAU R Y K, LI C P, LIAO S S Y. Social analytics:learning fuzzy product ontologies for aspect-oriented sentiment analysis[J]. Decision support systems, 2014, 65(5):80-94.
[34] 唐晓波,兰玉婷. 基于特征本体的微博产品评论情感分析[J]. 图书情报工作, 2016, 60(16):121-127, 136.
[35] 肖璐,陈果,刘继云. 基于情感分析的企业产品级竞争对手识别研究——以用户评论为数据源[J]. 图书情报工作, 2016, 60(1):83-90, 97.
[36] WANG T, CAI Y, LEUNG H F. Product aspect extraction supervised with online domain knowledge[J]. Knowledge-based systems, 2014, 71(11):86-100.
[37] YAN Z J, XING M M, ZHANG D S. EXPRS:an extended pagerank method for product feature extraction from online consumer reviews[J]. Information & management, 2015, 52(7):850-858.
[38] EIRINAKI M, PISAL S, SINGH J. Feature-based opinion mining and ranking[J]. Journal of computer and system sciences, 2012, 78(4):1175-1184.
[39] ZHANG C, ZENG D, LI J. Sentiment analysis of Chinese documents:from sentence to document level[J]. Journal of the Association for Information Science and Technology, 2009, 60(12):2474-2487.
[40] BAGHERI A, SARAEE M, JONG F. Care more about customers:unsupervised domain-independent aspect detection for sentiment analysis of customer reviews[J]. Knowledge-based systems, 2013, 52(6):201-213.
[41] WEI C P, CHEN Y M, YANG C S. Understanding what concerns consumers:a semantic approach to product feature extraction from consumer reviews[J]. Information systems and e-business management, 2010, 8(2):149-167.
[42] XUE H, ZHANG F, WANG W. Implicit feature identification in Chinese reviews using explicit topic mining model[J]. Knowledge-based systems, 2015, 76(3):166-175.
[43] 邱云飞,倪学峰,邵良杉. 商品隐式评价对象提取的方法研究[J]. 计算机工程与应用, 2015, 51(19):114-118.

Outlines

/