[1] 新浪公司投资者关系部.新浪发布2016年第四季度及全年财报[EB/OL].[2017-05-01].http://finance.sina.com.cn/stock/usstock/c/2017-02-23/doc-ifyavvsh5976970.shtml.
[2] 邬启为. 基于向量空间的文本聚类方法与实现[D]. 北京:北京交通大学, 2014.
[3] 曹娟, 张勇东, 李锦涛, 等.一种基于密度的自适应最优LDA模型选择方法[J]. 计算机学报, 2008, 31(10):1780-1787.
[4] DEERWESTER S C, DUMAIS S T, LANDAUER T K, et al. Indexing by latent semantic analysis[J]. Journal of the American Society for Information Science, 1990, 41(6):391-407.
[5] HOFMANN T. Probabilistic latent semantic indexing[C]//Proceedings of the 22nd annual international SIGIR conference. New York:ACM Press, 1999:50-57.
[6] BEI D, NG A, JORDAN M. Latent Dirichlet Allocation[J]. Journal of machine learning research, 2003(3):993-1022.
[7] RAMAGE D, HALL D, NALLAPATI R, et al. Labeled LDA:a supervised topic model for credit attribution in multi-labeled corpora[C]//Proceeding of the 2009 conference on empirical methods in natural language processing (EMNLP'09). Stroudsburg:Assocation for Comuputational Linguistics, 2009:248-256.
[8] LIU Z, HUANG W, ZHENG Y, et al. Automatic keyphrase extraction via topic decomposition[C]//Proceedings of the 2010 conference on empirical methods in natural language processing (EMNLP'10). Stroudsburg:Assocation for Comuputational Linguistics, 2010:366-376.
[9] FENG Y, LAPATA M. Topic models for image annotation and text illustration[C]//Proceedings of the North American Chapter of the Association for Computational Linguistics. Berlin:Springer, 2010:831-839.
[10] 姜晓伟, 王建民, 丁贵广. 基于主题模型的微博重要话题发现与排序方法[J]. 计算机研究与发展, 2013(增刊):179-185.
[11] 唐晓波, 王洪艳. 基于潜在语义分析的微博主题挖掘模型研究[J]. 图书情报工作, 2012, 56(24):114-119.
[12] 翟延冬, 王康平, 张东娜.一种基于Word Net的短文本语义相似性算法[J]. 电子学报, 2012, 40(3):617-620.
[13] BEIL F, ESTER M, XU X. Frequent term based text clustering[C]//Proceedings of the 8th ACM SIGKDD international conference on knowledge discovery and data mining (KDD'02). New York:ACM, 2002:436-422.
[14] FUNG B C M, WANG K, ESTER M. Hierarchical document clustering using frequent itemsets[C]//Proceedings of the 3rd SIAM international conference on data mining (SDM'03). Philadephia:SIAM, 2003:59-70.
[15] ZHANG W, YOSHIDA T, TAND X J, et al. Text clustering using frequent itemsets[J]. Knowledge-based systems, 2010, 23(5):379-388.
[16] 彭敏, 黄佳佳, 朱佳晖, 等. 基于频繁项集的海量短文本聚类与主题抽取[J]. 计算机研究与发展, 2015, 52(9):1941-1953.
[17] LI Y, CHUNG S M, HOLT J D. Text document clustering based on frequent word meaning sequences[J]. Data & knowledge engineering, 2008, 64(1):381-404.
[18] MACQUEEN J B. Some methods for classification and analysis of multivariate observations[C]//Proceedings of the fifth Berkeley symposium on mathematical statistics and probability. Berkeley:University of California Press, 1967:281-297.
[19] LI W, MRCALLUM A. Pachinko allocation:DAG-structured mixture models of topic correlations[C]//Proceedings of the international conference on machine learning (ICML). Pittsburgh:Pennsylcanis, 2006:577-584.
[20] NG R T, HAN J. Clarans:a method for clustering objects for spatial data mining[J].IEEE transactions on knowledge and data engineering, 2002,14(5):1003-1016.
[21] GUHA S, RASTOGI R, SHIM K. CURE:an efficient clustering algorithm for large databases[C]//Proceedings of ACM international conference management of data. New York:ACM, 1998:73-84.
[22] GUHA S, RASTOGI R, SHIM K. ROCK:a robust clustering algorithm for categorical attributes[J]. Information systerns, 2000, 25(5):345-366.
[23] KARYPIS G, HAN E H, KUMAR V. Chameleon:hierarchical clustering using dynamic modeling[J]. Computer, 1999, 32(8):68-75.
[24] PONS-PORRATA A, BERLANGA-LLAVORI R, RUIZ-SHULCLOPER J. Topic discovery based on text mining techniques[J]. Information processing & management, 2007, 43(3):752-768.
[25] CUTTNG D R, KARGER D R, PEDERSEN J O, et al. Scatter/gather:a cluster-based approach to browsing large document collections[C]//Proceedings of the 15th annual international ACM AIGIR conference on rrsearch and development in information retrieval. New York:ACM, 1992:318-329.
[26] ZHAO Y, KARYPIS G, FAYYAD U. Hierarchical clustering algorithms for document datasets[J]. Data mining and knowledge discovery, 2005, 10(2):141-168.
[27] 郝洪星, 朱玉全, 陈耿, 等. 基于划分和层次的混合动态聚类算法[J]. 计算机应用研究, 2011, 28(1):51-53.
[28] ASUNCION A U, SMYTH P, WELLING M. Asynchronous distributed learning of topic models[C]//Proceedings of the 22nd annual conference on neural information processing systems advances. British Columbia:Vancouver, 2008:81-88.
[29] YAN X H, GUO J F, LAN Y Y, et al.A biterm topic model for short texts[C]//Proceedings of the 22nd international World Wide Web conferences. New York:ACM, 2013:1445-1456.
[30] BLEI D M. LAFFERY J D. Correlated topic medels[C]//Advances in neural information processing systems 18. Cambridge:MIT Press, 2005:118-120.
[31] 张晨逸, 孙建伶, 丁轶群. 基于MB-LDA模型的微博主题挖掘[J].计算机研究与发展, 2011,48(10):1795-1802.
[32] 唐晓波, 向坤. 基于LDA模型和微博热度的热点挖掘[J]. 图书情报工作, 2014, 58(5):58-63.
[33] WENG J S, LIM P, JIANG J, et al. Twitterrank:finding topic-sensitive influential twitterers[C]//Proceedings of the 3rd ACM international conference on Web search and data mining(WSDM'10). New York:ACM Press, 2010:261-270.
[34] ZVI M, GRIFFITHS T, STEYVERS M, et al. The author-topic model for authors and documents[C]//Proceedings of the 20th conference on uncertainty in artificial intelligence(UAI'04). Arlington:AUAI Press, 2004:487-494.
[35] LIN C, HE Y. Joint sentiment/topic model for sentiment analysis[C]//Proceedings of the 18th ACM conference on information and knowledge management. New York:ACM, 2009:375-384.
[36] DING W Y, SONG X L, GUO L F, et al. A novel hybrid HDP-LDA model for sentiment analysis[C]//Proceedings of IEEE/WIC/ACM international joint conferences on Web intelligence and intelligent agent technology. New York:ACM, 2013:329-336.
[37] JO Y, OH A. Aspect and sentiment unification model for online review analysis[C]//Proceedings of the 4th ACM international conference on Web search and data mining. New York:ACM, 2011:815-824.
[38] TITOV I, MCDONALD R. Modeling online reviews with multi-grain topic models[C]//Proceedings of WWW'08. New York:ACM, 2008:111-120.
[39] MEI Q Z, LING X, WONDER M, et al. Topic sentiment mixture:modeling facets and opinion in weblogs[C]//Proceedings of the 16th international conference on World Wide Web. New York:ACM, 2007:171-170.
[40] WANG C, WANG J, XIE X, et al. Mining geographic knowledge using location aware topic model[C]//Proceedings of the 4th ACM workshop on geographical information retrieval. New York:ACM, 2007:65-70.
[41] MEI Q Z, LIU C, SU H, et al. A probabilistic approach to spatiotemporal theme pattern mining on weblogs[C]//Proceedings of the 15th international conference on World Wide Web. New York:ACM, 2006:533-542.
[42] MEI Q Z, CAI D, ZHANG D, et al. Topic modeling with network regularization[C]//Proceedings of the 17th international conference on World Wide Web. New York:ACM Press, 2008:101-110.
[43] RATTENBURY T, GOOD N, NAAMAN M. Towards automatic extraction of event and place semantics from Flickr tags[C]//Proceedings of the 30th annual International ACM SIGR conference on research and development in information retrieval. New York:ACM Press, 2007:103-110.
[44] CRANDALL D J, BACKSTROM L, HUTTENLOCHER D P, et al. Maping the world's photos[C]//Proceedings of the 18th international conference on World Wide Web. New York:ACM Press, 2009:761-770.
[45] SIZOV S. GeoFolk:latent spatial semantics in web 2.0 social media[C]//Proceedings of the 17th international conference on World Wide Web. New York:ACM Press, 2008:297-306.
[46] YIN Z J, CAO L L, HAN J W, et al. Geographical topic discovery and comparison[C]//Proceedings of the 11th international conference on World Wide Web. New York:ACM, 2011:247-256.
[47] 张寅,汤斯亮,罗斯杰,等. 结合作者与地理信息的主题建模[J]. 计算机辅助设计与图形学学报, 2012, 24(9):1180-1187.
[48] 胡艳丽, 白亮, 张维明. 网络舆情中一种基于OLDA的在线话题演化方法[J].国防科技大学学报,2012(1):150-154.
[49] 洪娜, 钱庆, 李亚子, 等. 网络内容演化趋势影响因素分析——从词的生命周期和背景词簇环境中挖掘演化线索[J].情报理论与实践,2012(6):44-48.
[50] BLEI D M, LAFFERTY J D. Dynamic topic models[C]//Proceedings of the 23rd international conference on machine learning (ICML). New York:ACM, 2006:113-120.
[51] 唐晓波, 房晓可. 基于文本聚类与LDA相融合的微博主题检索模型研究[J]. 情报理论与实践, 2013, 36(8):85-90.
[52] 史剑虹, 陈兴蜀, 王文贤. 基于隐含主题分析的中文微博话题发现[J]. 计算机应用研究, 2014, 31(3):700-704.
[53] 蒋盛益, 麦智凯, 吴美玲, 等. 微博信息挖掘技术研究综述[J]. 图书情报工作, 2012,56(17):136-142.
[54] 李鹏, 于岩, 李英乐, 等. 基于权重微博链的改进LDA微博主题模型[J]. 计算机应用研究, 2015, 33(7):2018-2021.
[55] WANG D S,KYUNGLAG K,SOHN J,et al. Community topical fingerprint analysis based on social semantic networks[M]. Lecture notes in electrical engineering,2014:83-91.
[56] 刘怡君, 李倩倩, 田儒雅, 等.基于超网络的社会舆论形成及应用研究[J].中国科学院院刊, 2012, 27(5):560-567.