[Purpose/significance]How to effectively integrate and utilize multi-source data in the big data environment is the key problem of enterprise product competitive intelligence research and practice. This paper aims to solve the different tasks of product competitive intelligence analysis by using the characteristics of different data sources from the perspective of task decomposition. It proposes and verifies the competitive intelligence analysis model of the goal-level fusion, which provides the basis for the follow-up theory research and practice.[Method/process]First of all, it compared several typical network sources of the product consumption data, product dynamic news and user data, and combed its characteristics and the value in the product market competitive intelligence analysis. Secondly, In terms of three tasks-competitive product identification, product dynamic tracking and product user analysis, the corresponding data sources were integrated into the product competitive intelligence analysis process. In the empirical part, it chose the "OPPO R9s" phone as the analytic target, integrating the data of mainstream e-commerce platform, Baidu News and Sina Microblog into the product competitive intelligence analysis.[Result/conclusion]The experimental results show that our approach can identify the competitive product of "OPPO R9s", detect their hotspot issues in market and reveal the distribution of users who concern about these products. The multi-source fusion scheme proposed in this paper can effectively support the enterprise market competition intelligence analysis.
Chen Guo
,
Zhu Xiling
,
Xiao Lu
. Study on Multi-source Fusion Competitive Intelligence of Enterprise Products from the Perspective of Task Decomposition[J]. Library and Information Service, 2017
, 61(22)
: 127
-133
.
DOI: 10.13266/j.issn.0252-3116.2017.22.016
[1] 肖璐.基于社会化媒体挖掘的企业竞争情报分析[D].武汉:武汉大学,2015.
[2] 张洋,凌婉阳.基于多源社会化媒体评论的竞争情报挖掘研究[J].情报理论与实践,2015,38(7):59-66.
[3] 化柏林,李广建.大数据环境下的多源融合型竞争情报研究[J].情报理论与实践,2015, 38(4):1-5.
[4] 王丽娜.面向任务的企业竞争情报收集模式研究[D].天津:南开大学,2011.
[5] 才华.企业技术创新中获取竞争情报效果的评价[J]. 竞争情报,2006,2(4):7-12.
[6] 李维思,侯峻,廖婷,等.企业生命周期中产品创新的竞争情报精准服务[J].中国科技资源导刊,2017(2):62-67.
[7] XU K Q, LIAO S S Y, L J X, et al.Mining Comparative Opinions from Customer Reviews for Competitive Intelligence[J].Decision Support Systems,2011,50(4):743-754.
[8] 肖璐,陈果,刘继云.基于情感分析的企业产品级竞争对手识别研究——以用户评论为数据源[J].图书情报工作,2016,60(1):83-90.
[9] 袁晓珂.基于定标比超和KSF的企业竞争情报分析方法研究[J].竞争情报,2014,10(1):19-22.
[10] 王伟,王洪伟.面向竞争力的特征比较网络:情感分析方法[J].管理科学学报,2016(9):109-126.
[11] KIM Y, DWIVEDI R, ZHANG J, et al.Competitive intelligence in social media Twitter:iPhone 6 vs. Galaxy S5[J].Online Information Review,2016,40(1):42-61.
[12] 李广建,化柏林.大数据分析与情报分析的关系辨析[J].中国图书馆学报,2014(5):14-22.
[13] 李广建,杨林.大数据视角下的情报研究与情报研究技术[J].图书与情报,2012(6):1-8.
[14] 廖开际,张艺.基于信息融合的企业竞争情报系统构建[J].情报杂志,2012(10):1-5.
[15] 李会,李侠,魏瑞斌.大数据环境下多源融合型企业竞争情报系统的重构研究[J].宿州学院学报, 2017, 32(2):109-113.
[16] 郑彦宁,刘志辉,赵筱媛,等.基于多源信息与多元方法的产业竞争情报分析范式[J].情报学报,2013,32(3):228-234
[17] BEAVEN S G, GOGINENI S, CARSEY F D. Fusion of satellite active and passive microwave data for sea ice type concentration estimates[J]. IEEE transactions on geoscience and remote sensing, 1996, 34(5):1172-1183.
[18] 张玉峰,吴金红,王翠波.面向DeepWeb的动态竞争情报智能采集策略[J].情报学报,2008(8):624-630.
[19] 黄晓斌,刘薇,帕尔哈提·尼加提.微博客的特点及其在企业竞争情报中的应用[J].情报理论与实践,2012,35(5):1-4.
[20] 肖璐,陈果.企业竞争情报中微博分析技术研究:基于需求驱动视角[J].情报理论与实践,2015,38(2):116-120.
[21] 张红芹,鲍志彦.基于专利地图的竞争对手识别研究[J].情报科学,2011,29(12):1825-1829.