Using Citation Contents for the Interdisciplinary Type Analysis at a Topical Level

  • Xu Shurui ,
  • Zhang Chengzhi ,
  • Lu Chao
Expand
  • 1. Department of Information Management, Nanjing University of Science and Technology, Nanjing 210094;
    2. Jiangsu Science and Technology Collaborative Innovation Center of Social Public Safety, Nanjing 210094;
    3. Jiangsu Key Laboratory of Data Engineering and Knowledge Service(Nanjing University), Nanjing 210093

Received date: 2017-06-16

  Revised date: 2017-09-09

  Online published: 2017-12-05

Abstract

[Purpose/significance] This paper calculates the interdisciplinary degree at a topical level and establishes quantitative standards for the interdisciplinary classification in terms of the contents, because the current issues of interdisciplinary macro-research lack the description of interdisciplinary topics, and interdisciplinary micro-research is still in the topic detection stage. [Method/process] Firstly, full-text articles were collected, and terminologies were extracted. Secondly, the repetition rate of subject terminologies in citation contents were calculated.Then, the degrees of topical interdisciplinarity were calculated. Finally, the disciplines were categorized according to the topical distribution entropy of interdisciplinarity. [Result/conclusion] The results are as follows:(i) All six disciplines share abundant interdisciplinary knowledge with much medical theoretical basis knowledge but rare medical practical knowledge. (ii) Three types of interdiscipline are observed:internal interdiscipline, instrumental interdiscipline, external interdiscipline. In conclusion, the interdisciplinary types can be quantitatively studied at the micro level through the terminologies in the citation content.

Cite this article

Xu Shurui , Zhang Chengzhi , Lu Chao . Using Citation Contents for the Interdisciplinary Type Analysis at a Topical Level[J]. Library and Information Service, 2017 , 61(23) : 15 -24 . DOI: 10.13266/j.issn.0252-3116.2017.23.002

References

[1] WATSON J D. The double helix:apersonal account of the discovery of the structure of DNA[M]. New York:Weidenfeld and Nicolson, 1968.
[2] 许海云, 尹春晓, 郭婷, 等. 学科交叉研究综述[J]. 图书情报工作, 2015,59(5):119-127.
[3] HUUTONIEMI K, KLEIN J T, BRUUN H, et al. Analyzing interdisciplinarity:typology and indicators[J]. Research policy, 2010,39(1):79-88.
[4] SMALL H. Cited documents as concept symbols[J]. Social studies of science, 1978,8(3):327-340.
[5] 郑述谱. 俄罗斯当代术语学[M]. 北京:商务印书馆, 2005.
[6] 张榕. 术语学与术语信息处理[M]. 北京:中国社会科学出版社, 2015.
[7] 马晓雷. 被引内容分析:探究领域知识结构的新方法尝试[M]. 北京:外语教学与研究出版社, 2011.
[8] 胡志刚. 全文引文分析:理论、方法与应用[M]. 北京:科学出版社, 2016.
[9] 章成志, 徐庶睿, 卢超. 利用引文内容监测多学科交叉现象的方法与实证[J]. 图书情报工作, 2016,60(19):108-115.
[10] MUGABUSHAKA A, KYRIAKOU A, PAPAZOGLOU T. Bibliometric indicators of interdisciplinarity:the potential of the Leinster-Cobbold diversity indices to study disciplinary diversity[J]. Scientometrics, 2016,107(2):593-607.
[11] WAGNER C S, ROESSNER J D, BOBB K, et al. Approaches to understanding and measuring interdisciplinary scientific research (IDR):a review of the literature[J]. Journal of informetrics, 2011,5(1):14-26.
[12] ABOELELA S W, LARSON E, BAKKEN S, et al. Defining interdisciplinary research:conclusions from a critical review of the literature[J]. Health services research, 2007,42(1,part 1):329-346.
[13] STIRLING A. On the economics and analysis of diversity[J]. Science policy research unit, 1998,28:1-156.
[14] STIRLING A. A general framework for analysing diversity in science, technology and society[J]. Journal of the Royal Society interface, 2007,4(15):707-719.
[15] PURVIS A, HECTOR A. Getting the measure of biodiversity[J]. Nature, 2000,405(6783):212.
[16] PORTER A L, COHEN A S, ROESSNER J D, et al. Measuring researcher interdisciplinarity[J]. Scientometrics, 2007,72(1):117-147.
[17] RAFOLS I, MEYER M. Diversity and network coherence as indicators of interdisciplinarity:case studies in bionanoscience[J]. Scientometrics, 2010,82(2):263-287.
[18] VUGTEVEEN P, LENDERS R, VAN DEN BESSELAAR P. The dynamics of interdisciplinary research fields:the case of river research[J]. Scientometrics, 2014,100(1):73-96.
[19] XU H, GUO T, YUE Z, et al. Interdisciplinary topics of information science:a study based on the terms interdisciplinarity index series[J]. Scientometrics, 2016,106(2):583-601.
[20] ZHANG G, DING Y, MILOJEVIC S. Citation content analysis (CCA):a framework for syntactic and semantic analysis of citation content[J]. Journal of the American Society for Information Science & Technology, 2012,64(7):1490-1503.
[21] 祝清松, 冷伏海. 基于引文内容分析的高被引论文主题识别研究[J]. 中国图书馆学报, 2014,40(1):39-49.
[22] LIU S, CHEN C. The differences between latent topics in abstracts and citation contexts of citing papers[J]. Journal of the American Society for Information Science & Technology, 2013,64(3):627-639.
[23] 徐庶睿, 卢超, 章成志. 术语引用视角下的学科交叉测度——以PLOS ONE上六个学科为例[J]. 情报学报, 2017,36(8):809-820.
[24] MEI Q, ZHAI C. Generating impact-based summaries for scientific literature[C]//Proceedings of the Association for Computational Linguistics. Columbus:ACL, 2008:816-824.
[25] 章成志. 多语言领域本体学习研究[M]. 南京:南京大学出版社, 2012.
[26] 金建国. 聚类方法综述[J]. 计算机科学, 2014(S2):288-293.
[27] FREY B J, DUECK D. Clustering by passing messages between data points[J]. Science, 2007,315(5814):972-976.
[28] 孙海霞, 钱庆, 吴英杰, 等. MeSH词表的语义相似度计算研究[J]. 现代图书情报技术, 2010(6):12-16.
[29] 钱学森. 现代科学技术[N]. 人民日报, 1977-12-09(2).
[30] 周经野, 刘任任. 计算机科学的数学基础[M]. 湖南:湘潭大学出版社, 2007.
[31] 张春美, 郝凤霞, 闫宏秀. 学科交叉研究的神韵——百年诺贝尔自然科学奖探析[J]. 科学技术与辩证法, 2001,18(6):63-67.
[32] YAN E. Finding knowledge paths among scientific disciplines[J]. Journal of the Association for Information Science and Technology, 2014,65(11):2331-2347.
Outlines

/