Research and Enlightenment on Data Scientist Competency Systems Abroad

  • Qin Xiaoyan ,
  • Chu Jingli
Expand
  • 1. National Science Library, Chinese Academy of Sciences, Beijing 100190;
    2. University of Chinese Academy of Sciences, Beijing, 100049;
    3. Library of Beihang University, Beijing 100191

Received date: 2017-07-20

  Revised date: 2017-08-26

  Online published: 2017-12-05

Abstract

[Purpose/significance] This paper combed and analyzed the relevant research on the data scientist competency systems abroad to provide reference for building the competency system of data scientists, and be helpful to improve the efficiency of data science personnel cultivation and to meet the needs of data scientist's career development. [Method/process] The paper selected the typical data science research results of the major countries (regions), analyzed the competency elements, discussed the current research methods of the data scientist competency systems abroad, data scientist career access conditions, and the impact of information environment changes on data scientist competencies. [Result/conclusion] The construction of foreign data scientist competency system is worth learning from.It is suggested that China should build data scientist competency framework as soon as possible to clarify the training objectives and career development path. Through the top-level design, multi-party cooperation, strengthen the data science professional personnel training; emphasis both on theoretical knowledge and practical ability, pay attention to data scientists skills expansion.

Cite this article

Qin Xiaoyan , Chu Jingli . Research and Enlightenment on Data Scientist Competency Systems Abroad[J]. Library and Information Service, 2017 , 61(23) : 40 -50 . DOI: 10.13266/j.issn.0252-3116.2017.23.005

References

[1] MANYIKA J, CHUI M, BROWN B, et al. Big data:the next frontier for innovation, competition, and productivity[R/OL].[2017-04-15]. http://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/big-data-the-next-frontier-for-innovation.
[2] PwC. Investing in America's data science and analytics talent[EB/OL].[2017-06-01]. http://www.bhef.com/sites/default/files/bhef_2017_investing_in_dsa.pdf.
[3] 中国大数据产业观察网.《全国首份大数据人才报告》发布[R/OL].[2017-04-15]. http://mt.sohu.com/20160722/n460586777.shtml.
[4] 中国政府网. 国务院关于印发促进大数据发展行动纲要的通知:国发(2015)50号[A/OL].[2017-04-16].http://www.gov.cn/zhengce/content/2015-09/05/content_10137.htm.
[5] 中华人民共和国教育部. 教育部关于公布2016年度普通高等学校本科专业备案和审批结果的通知[A/OL].[2017-04-20]. http://www.moe.edu.cn/srcsite/A08/moe_1034/s4930/201703/t20170317_299960.html.
[6] TUKEY J W. The future of data analysis[J]. The annals of mathematical statistics, 1962, 33(1):1-67.
[7] NAUR P. Concise survey of computer methods[M]. Lund:Studentlitteratur AB,1974.
[8] 朱扬勇, 熊赟. 数据学与数据科学[OL].[2017-05-10].http://www.dataology.fudan.edu.cn/85/83/c4598a34179/page.htm.
[9] PROVOST F, FAWCETT T. Data science and its relationship to big data and data-driven decision making[J]. Big data, 2013, 1(1):51-59.
[10] CAO L B. Data science:a comprehensive overview[J]. ACM Computing Surveys (CSUR), 2017, 50(3):1-42.
[11] NIST big data public working group definitions and taxonomies subgroup.NISTspecialpublication 1500-1. DRAFT NIST big data interoperability framework:volume 1, definitions[R/OL].[2017-05-10]. https://bigdatawg.nist.gov/_uploadfiles/NIST.SP.1500-1.pdf.
[12] DAVENPORT T H, PATIL D J. Data scientist:the sexiest job of the 21st century[J]. Harvard business review, 2012,90(10):70-76.
[13] SIMBERLOFF D, BARISH B C, DROEGEMEIER K K, et al. Long-lived digital data collections:enabling research and education in the 21st century[R/OL].[2017-05-20]. http://arizona.openrepository.com/arizona/bitstream/10150/105473/1/LLDDC_report.pdf.
[14] SWAN A, BROWN S. Skills, role and career structure of data scientists and curators-assessment of current practice and future needs[R/OL].[2017-05-20]. http://www.jisc.ac.uk/media/documents/programmes/digitalrepositories/dataskillscareersfinalreport.pdf.
[15] EDISON Data science framework:part 1. Data science competence framework (CF-DS), release 1[R/OL].[2017-05-15]. http://edison-project.eu/data-science-competence-framework-cf-ds.
[16] Data scientist responsibilities[EB/OL].[2017-05-15].http://www.mastersindatascience.org/careers/data-scientist/.
[17] Data scientist foundations:the hard and human skills you need[EB/OL].[2017-05-15].http://www.mastersindatascience.org/blog/data-scientist-foundations-the-hard-and-human-skills-you-need/.
[18] SICULAR S. Big data analytics failures and how to prevent them[R/OL].[2017-05-18]. https://www.gartner.com/doc/3108918/big-data-analytics-failures-prevent.
[19] GARTNER. Data scientist[EB/OL].[2017-05-18]. http://www.gartner.com/it-glossary/data-scientist.
[20] BURTCH L. 9 must-have skills you need to become a data scientist[EB/OL].[2017-05-21]. http://www.kdnuggets.com/2014/11/9-must-have-skills-data-scientist.html.
[21] POWER D J. Data science:supporting decision-making[J]. Journal of decision systems, 2016, 25(4):345-356.
[22] EDISON[EB/OL].[2017-05-18]. http://edison-project.eu.
[23] European e-competence framework 3.0. A common European framework for ICT professionals in all industry sectors. CWA 16234:2014 Part 1[EB/OL].[2017-05-20]. http://ecompetences.eu/wp-content/uploads/2014/02/European-e-Competence-Framework-3.0_CEN_CWA_16234-1_2014.pdf.
[24] SWEETV S. Five steps to a data driven organization[EB/OL].[2017-05-20].http://www.bpminstitute.org/resources/articles/five-steps-data-driven-organization.
[25] STADELMANN T, STOCKINGER K, BRASCHLER M, et al. Applied data science in Europe-challenges for academia in keeping up with a highly demanded topic[J/OL].[2017-05-20].http://www.informatics-europe.org/images/ECSS/ECSS2013/slides/ECSS2013-Stadelmann-paper.pdf.
[26] RAOA. The 5 dimensions of the so-called data scientist[EB/OL].[2017-05-21]. http://usblogs.pwc.com/emerging-technology/the-5-dimensions-of-the-so-called-data-scientist/.
[27] HANCHARD S, RAMDAS T. Big data in Malaysia:emergingsectorprofile[R/OL].[2017-05-21].https://www.scribd.com/document/274542991/Big-Data-Malaysia-Emerging-Sector-Profile-2014.
[28] ISMAIL N A, ABIDIN W Z. Data scientist competency development roadmap for Malaysian public sector IT officers[R/OL].[2017-05-21]. http://ais.utm.my/paris2016/files/2016/11/27-Data-Scientist-Competency-Development-Roadmap-for-Malaysian-Public-Sector-IT-Officers.pdf.
[29] HARRIS H D, MURPHY S, VAISMAN M. Analyzing the analyzers:an introspective survey of data scientists and their work[M].Sebastopol:O'Reilly Media, Inc., 2013.
[30] CrowdFlower. 2015 data scientist report[R/OL].[2017-05-25].http://visit.crowdflower.com/rs/416-ZBE-142/images/Crowdflower_Data_Scientist_Survey2015.pdf.
Outlines

/