[1] 龙昕. 面向专家检索的社区挖掘研究[D]. 昆明:云南大学, 2010.
[2] BEDARD J. Expertise and its relation to audit decision quality[J]. Contemporary accounting research, 2010, 8(1): 198-222.
[3] GLASER R. The nature of expertise. Occasional paper No.107. [EB/OL].[2017-05-20].https://eric.ed.gov/?id=ED261190
[4] YIMAMSEID D, KOBSA A. Expert-finding systems for organizations: problem and domain analysis and the DEMOIR approach[J]. Journal of organizational computing &electronic commerce, 2003, 13(1): 1-24.
[5] 陆伟,刘杰,秦喜艳. 基于专长词表的图情领域专家检索与评价[J]. 中国图书馆学报, 2010, 36(2): 70-76.
[6] CLEUZIOU G. An extended version of the k-means method for overlapping clustering[C]// IEEE. Proceedings of 19th international conference on pattern recognition. Tampa: IEEE Press,2008:563-566.
[7] 张晓娟,陆伟,程齐凯. PLSA在图情领域专家专长识别中的应用[J]. 现代图书情报技术, 2012, 28(2): 76-81.
[8] APPIO F P, CESARONI F, MININ A D. Visualizing the structure and bridges of the intellectual property management and strategy literature: a document co-citation analysis[J]. Scientometrics, 2014, 101(1): 623-661.
[9] SONG X, TSENG B L, LIN C Y, et al. ExpertiseNet: relational and evolutionary expert modeling[C]// ARDISSONO L, BRNA P, MITROVIC A.Proceedings of user modeling 2005. Edinburgh: Springer. 2005:99-108.
[10] YANG K W, HUH S Y. Automatic expert identification using a text categorization technique in knowledge management systems[J]. Expert systems with applications, 2008, 34(2): 1445-1455.
[11] DOM B, EIRON I, COZZI A, et al. Graph-based ranking algorithms for e-mail expertise analysis[C]//KIM W, KOHAVI R, GEHRKE J, et al. Proceedings of the 8th ACM SIGMOD workshop on research issues in data mining and knowledge discovery. San Diego: IEEE Press,2003:42-48.
[12] 毛进,李纲. 一种基于OKM的研究领域专家图谱构建方法[J]. 图书情报工作, 2014, 58(14): 34-40.
[13] 魏圆圆,钱平,王儒敬,等. 知识工程中的知识库、本体与专家系统[J]. 计算机系统应用, 2012, 21(10): 220-223.
[14] 吴春胤,陈壮光,王浩杰,等. 基于本体的专家系统研究综述[J]. 农业网络信息, 2013(4): 5-8.
[15] 胡月红,刘萍. 基于本体概念的专长表示研究[J]. 图书情报工作, 2012, 56(4): 17-21.
[16] 刘昕民,桂卫华,杨柳,等. 基于模糊领域本体的专家遴选服务研究[J]. 北京理工大学学报, 2013, 33(5): 484-489.
[17] LIU R. A new bibliographic coupling measure with descriptive capability[J]. Scientometrics, 2016, 110(2): 1-21.
[18] LI Y, ZHANG G, FENG Y, et al. An entropy-based social network community detecting method and its application to scientometrics[J]. Scientometrics, 2015, 102(1): 1003-1017.
[19] 巩军,刘鲁. 基于知识网络的专家知识的表示与度量[J]. 科学学研究, 2010, 28(10): 1521-1529.
[20] 刘萍,周梦欢. 基于共词网络的专家专长挖掘[J]. 情报科学, 2012, 30(12): 1815-1819.
[21] STEYVERS M, SMYTH P, ROSENNAZVI M, et al. Probabilistic author-topic models for information discovery[C]//KOHAVI R. Proceedings of the tenth ACM SIGKDD international conference on knowledge discovery and data mining. New York:ACM, 2004:306-315.
[22] TEH Y W, JORDAN M I,BEAL M J, et al. Hierarchical Dirichlet processes[J]. Journal of the American Statistical Association, 2006, 101(476): 1566-1581.
[23] YAU C K, PORTER A L, NEWMAN N, et al. Clustering scientific documents with topic modeling[J]. Scientometrics, 2014, 100(3): 767-786.
[24] BLEI D M, JORDAN M, GRIFFITHS T L, et al. Hierarchical topic models and the nested Chinese restaurant process[C]// THRUN S, SAUL KL. Proceedings of the 16th international conference on neural information processing systems. Cambridge: MIT Press, 2003:17-24.
[25] BLEI D M, NG A Y, JORDAN M I. Latent Dirichlet allocation[J]. Journal of machine learning research, 2003, 3(4/5): 993-1022.
[26] HOFMANN T. Probabilistic latent semantic indexing[C]// GEY F, HEARST M, TONG R. Proceedings of the 22nd annual international ACM SIGIR conference on research and development in information retrieval. Berkeley: ACM, 1999: 50-57.
[27] MULDER W D. Optimal clustering in the context of overlapping cluster analysis[J]. Information sciences, 2013, 223(4): 56-74.
[28] N’CIR,BEN C E, CLEUZIOU G, et al. Overview of overlapping partitional clustering methods[M].New York:Springer International Publishing, 2015: 245-275.
[29] ZHANG Y, PORTER A L, HU Z, et al."Term clumping" for technical intelligence: a case study on dye-sensitized solar cells[J]. Technological forecasting & social change, 2014, 85(4): 26-39.
[30] LEE K, JUNG H, SONG M. Subject-method topic network analysis in communication studies[J]. Scientometrics, 2016, 109(3): 1761-1787.
[31] AHLGREN P, JARNEVING B. Bibliographic coupling, common abstract stems and clustering: a comparison of two document-document similarity approaches in the context of science mapping[J]. Scientometrics, 2008, 76(2): 273-290.
[32] 刘勘,刘萍. 基于VSM的专家领域分析及可视化研究[J]. 图书情报工作, 2011, 55(10): 74-77.
[33] 施聪莺,徐朝军,杨晓江. TFIDF算法研究综述[J]. 计算机应用, 2009, 29(6): 167-170.
[34] 张玉芳,彭时名,吕佳. 基于文本分类TFIDF方法的改进与应用[J]. 计算机工程, 2006, 32(19): 76-78.
[35] N’CIR, BEN C E, ESSOUSSI N. On the extension of K-means for overlapping clustering-average or sum of clusters’ representatives?[C]// FRED A, DIETZ J, LIU K. IC3K. KDIR/KMIS 2013- Proceedings of the international conference on knowledge discovery and information retrievaland the international conference on knowledge management and information sharing. Vilamoura: Springer, 2013:208-213.
[36] HUANG Y, SCHUEHLE J, PORTER A L, et al. A systematic method to create search strategies for emerging technologies based on the Web of Science: illustrated for ‘big data’[J]. Scientometrics, 2015, 105(3): 2005-2022.
[37] VantagePoint[EB/OL].[2017-05-20].http://www.thevantagepoint.com/.
[38] 李贺,袁翠敏,李亚峰. 基于文献计量的大数据研究综述[J]. 情报科学, 2014, 32(6): 148-155.
[39] 工业和信息化部电信研究院. 大数据白皮书[R].北京:工业和信息化部电信研究院,2014.
[40] CHURYKN T, JANVRIN D, WATSON M. Special issue on big data[J]. Journal of accounting education, 2017, 38(1):1-2.
[41] STEINLEY D. Local optima in K-means clustering: what you don’t know may hurt you[J]. Psychological methods, 2003, 8(3): 294-304.