Dynamic Evolution Analysis on Domain Knowledge Clustering

  • An Ning
Expand
  • 1. School of Information Science and Technology, Northeast Normal University, Changchun 130117;
    2. Library of Jilin University, Changchun 130012;
    3. School of Management, Jilin University, Changchun 130022

Received date: 2017-10-24

  Revised date: 2018-01-28

  Online published: 2018-05-20

Abstract

[Purpose/significance] Exploring the clustering evolution in the process of domain knowledge development can help to reveal the characteristics and rules of knowledge clustering, this is great significance to master the clustering rules of correlation knowledge in the development and evolution process.[Method/process] Based on the idea of complex network, this paper constructed the time series domain knowledge networks in accordance with the occurred-value of tags adjacency relation. That is, according to the network motif theory, this paper dynamically tracked and analyzed the domain knowledge networks by the analysis method of network clustering coefficient. Then, by combining with the network density, the characteristic path length, the node degree value, the triadic closure and other indicators, this article analyzed the clustering evolution in the process of domain knowledge development from random factors, degree correlation, and adjacent correlation.[Result/conclusion] The results show:①Domain knowledge in the development process always keeps a higher clustering. ②The clustering of domain knowledge includes both randomness and structuration (non-randomness). ③The dynamic status of domain knowledge clustering evolves between small-world network and scale-free network waveringly. ④The clustering status of domain knowledge shows a certain difference between the whole network and local nodes.

Cite this article

An Ning . Dynamic Evolution Analysis on Domain Knowledge Clustering[J]. Library and Information Service, 2018 , 62(10) : 85 -93 . DOI: 10.13266/j.issn.0252-3116.2018.10.012

References

[1] GARFIELD E. Citation indexes for science:a new dimension in documentation through association of ideas[J]. Science, 1955, 122(3159):108-111.
[2] PRICE D J de S. Networks of scientific papers[J]. Science, 1965, 149(3683):510-515.
[3] BARABASI A-L. Network science[M]. Cambridge:Cambridge University Press, 2016:20-41.
[4] SHIBATA N, KAJIKAWA Y, TAKEDA Y, et al. Comparative study on methods of detecting research fronts using different types of citation[J]. Journal of the association for information science and technology, 2009, 60(3):571-580.
[5] 李亚婷, 马费成. 基于标签共现的社会网络分析研究[J]. 情报杂志, 2012, 31(7):103-109.
[6] 胡昌平, 陈果. 层次视角下概念知识网络的三元关系形态研究[J]. 图书情报工作, 2014, 58(4):11-16.
[7] NEWMAN M E J. Clustering and preferential attachment in growing networks[J]. Physical review E, 2001, 64(2):025102.
[8] MAKANI J, SPITERI L. The dynamics of collaborative tagging:an analysis of tag vocabulary application in knowledge representation, discovery and retrieval[J]. Journal of information & knowledge management, 2010, 9(2):93-103.
[9] LIU W, NANETTI A, CHEONG S A. Knowledge evolution in physics research:an analysis of bibliographic coupling networks[J]. PLoS ONE, 2017, 12(9):e0184821.
[10] 刘向, 马费成, 王晓光. 知识网络的结构及过程模型[J]. 系统工程理论与实践, 2013, 33(7):1836-1844.
[11] 滕广青. Folksonomy模式中紧密型领域知识群落动态演化研究[J]. 中国图书馆学报, 2016, 42(4):51-63.
[12] 祝娜, 王芳. 基于主题关联的知识演化路径识别研究——以3D打印领域为例[J]. 图书情报工作, 2016, 60(5):101-109.
[13] MA J. The sustainability and stabilization of tag vocabulary in CiteULike:an empirical study of collaborative tagging[J]. Online information review, 2012, 36(5):655-674.
[14] MILO R, SHEN-ORR S, ITZKOVITZ S, et al. Network motifs:simple building blocks of complex networks[J]. Science, 2002, 298(5594):824-827.
[15] NEWMAN M E J. 网络科学引论[M]. 郭世泽, 陈哲, 译. 北京:电子工业出版社, 2014:126-130, 152-173.
[16] BARABASI A-L, ALBERT R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439):509-512.
[17] 滕广青, 贺德方, 彭洁, 等. 基于网络中心性的领域知识动态演化研究[J]. 图书情报工作, 2016, 60(14):128-134, 141.
[18] MCGLOHON M, AKOGLU L, FALOUTSOS C. Statistical properties of social networks[C]//AGGARWAL C C. Social Network Data Analytics. New York:Springer, 2011:17-39.
[19] 滕广青, 常志远, 刘雅姝, 等. Folksonomy知识组织模式中领域知识动态演化规律研究[J]. 图书与情报,2016(4):96-101, 82.
[20] WATTS D J, STROGATZ S H. Collective dynamics of ‘small-world’ networks[J]. Nature, 1998, 393(6684):440-442.
[21] LEWIS T G. 网络科学:原理与应用[M]. 陈向阳, 巨修练, 等, 译. 北京:机械工业出版社, 2011:138-140.
[22] FRONCZAK A, HOLYST J A, JEDYNAK M, et al. Higher order clustering coefficients in Barabási-Albert networks[J]. Physica A:statistical mechanics and its applications, 2002, 316(1):688-694.
Outlines

/