[Purpose/significance] Analyzing the evolution of technological topic makes it possible for us to track the development of technology, which is essential for improving innovation activity and forecasting development trends of technology. However, to our knowledge, scholars pay less attention to the semantic perspective of technological topic. Therefore, this paper intends to analyze the evolution of technological topic from the perspective of semantic.[Method/process] This paper proposed a dynamic topic model based on non-negative matrix factorization, and labeled the technology topics with noun phrases extracted by TextRank algorithm, which enhances the interpretability. Then, the study computed and visualized the evolutionary trajectory of technological topics with word embedding.[Result/conclusion] This paper uses five countries' (China, America, Japan, South Korea, Europe) patent data in 2002, 2005, 2008, 2011 and 2014 to test our model. During the course of the experiment,our method extracted evolutionary trajectories of 65 technical topics, which verified the effectiveness of our method.
[1] ROSENBERG N. Technological change in the machine tool industry, 1840-1910[J]. The journal of economic history, 1963, 23(4):414-443.
[2] ROSENBERG N. Exploring the black box:technology, economics, and history[M]. Cambridge:Cambridge University Press, 1994.
[3] CHO Y, KIM M. Entropy and gravity concepts as new methodological indexes to investigate technological convergence:patent network-based approach[J/OL]. PLOS ONE, 2014, 9(6):e98009[2016-10-26]. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0098009.
[4] 胡阿沛, 张静, 雷孝平, 等. 基于文本挖掘的专利技术主题分析研究综述[J]. 情报杂志, 2013(12):88-92.
[5] 肖沪卫. 专利地图方法与应用[M]. 上海:上海交通大学出版社, 2011.
[6] SUZUKI K, SAKATA J, HOSOYA J. An empirical analysis on progress of technology fusion[C]//IEEE. Third International conference on digital information management (ICDIM). Piscataway:IEEE Xplore, 2008:937-939.
[7] JEONG S, KIM J C, CHOI J Y. Technology convergence:what developmental stage are we in?[J]. Scientometrics, 2015, 104(3):841-871.
[8] LEE W S, HAN E J, SOHN S Y. Predicting the pattern of technology convergence using big-data technology on large-scale triadic patents[J]. Technological forecasting and social change, 2015, 100:317-329.
[9] HUANG B, HUANG L. Patent-based association analysis for technological convergence of IT and BT[C]//IEEE. 2015 International Conference on Logistics, Informatics and Service Sciences (LISS). Piscataway:IEEE Xplore, 2015:1-6.
[10] NARIN F. Patent bibliometrics[J]. Scientometrics, 1994, 30(1):147-155.
[11] CHANG P L, WU C C, LEU H J. Using patent analyses to monitor the technological trends in an emerging field of technology:a case of carbon nanotube field emission display[J]. Scientometrics, 2010, 82(1):5-19.
[12] CHOI C, PARK Y. Monitoring the organic structure of technology based on the patent development paths[J]. Technological forecasting and social change, 2009, 76(6):754-768.
[13] GEUM Y, KIM C, LEE S, et al. Technological convergence of IT and BT:evidence from patent analysis[J]. ETRI journal, 2012, 34(3):439-449.
[14] 翟东升, 蔡力伟, 张杰,等. 基于专利的技术融合创新轨道识别模型研究——以云计算技术为例[J]. 情报学报, 2015, 34(4):352-360.
[15] MOGEE M E, KOLAR R G. Patent co-citation analysis of Eli Lilly & Co. patents[J]. Expert opinion on therapeutic patents, 1999, 9(3):291-305.
[16] HUANG M H, CHIANG L Y, CHEN D Z. Constructing a patent citation map using bibliographic coupling:a study of Taiwan's high-tech companies[J]. Scientometrics, 2003, 58(3):489-506.
[17] 陈亮, 张志强. 技术演化研究方法进展分析[J]. 图书情报工作, 2012, 56(17):59-66.
[18] MARTINELLI A. An emerging paradigm or just another trajectory? Understanding the nature of technological changes using engineering heuristics in the telecommunications switching industry[J]. Research policy, 2012, 41(2):414-429.
[19] MINA A, RAMLOGAN R, TAMPUBOLON G, et al. Mapping evolutionary trajectories:applications to the growth and transformation of medical knowledge[J]. Research policy, 2007, 36(5):789-806.
[20] SU H N, LEE P C. Dynamic and quantitative exploration on technology evolution mechanism:the case of electrical conducting polymer nanocomposite[C]//IEEE. 2009 Portland international conference on management of engineering & technology (PICMET). Piscataway:IEEE Xplore, 2009:2433-2440.
[21] BATAGELJ V. Analyzing the structure of US patents network[M]//Data science and classification. Springer, Berlin, Heidelberg, 2006:141-148.
[22] ABBAS A, ZHANG L, KHAN S U. A literature review on the state-of-the-art in patent analysis[J]. World patent information,2014, 37(4):3-13.
[23] 栾春娟. 基于专利共现的全球太阳能技术网络及关键技术演进分析[J]. 情报学报, 2013, 32(1):68-79.
[24] 韩红旗, 安小米, 朱东华, 等. 专利技术术语共现的战略图分析方法[J]. 计算机应用研究, 2011, 28(2):576-579.
[25] CHEN S H, HUANG M H, CHEN D Z. Identifying and visualizing technology evolution:a case study of smart grid technology[J]. Technological forecasting & social change, 2012, 79(6):1099-1110.
[26] LEE D D, SEUNG H S. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 401:788-791.
[27] WANG Q, CAO Z, XU J, et al. Group matrix factorization for scalable topic modeling[C]//Proceedings of the 35th international ACM SIGIR conference on research and development in information retrieval. New York:ACM, 2012:375-384.
[28] BOUTSIDIS C, GALLOPOULOS E. SVD based initialization:a head start for nonnegative matrix factorization[J]. Pattern recognition, 2008, 41(4):1350-1362.
[29] CHANG J, GERRISH S, WANG C, et al. Reading tea leaves:how humans interpret topic models[C]//Proceedings of the 22nd international conference on neural information processing systems. USA:Curran Associates Inc., 2009:288-296.
[30] O'CALLAGHAN D, GREENE D, CARTHY J, et al. An analysis of the coherence of descriptors in topic modeling[J]. Expert systems with applications, 2015, 42(13):5645-5657.
[31] MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality[C]//Proceedings of the 26th international conference on neural information processing systems. USA:Curran Associates Inc., 2013:3111-3119.
[32] 潘教峰, 张晓林, 王小梅, 等. 科学结构地图2012[M]北京:科学出版社,2013.
[33] SULO R, BERGER-WOLF T, GROSSMAN R. Meaningful selection of temporal resolution for dynamic networks[C]//Proceedings of the Eighth workshop on mining and learning with graphs. New York:ACM, 2010:127-136.
[34] LEE H J, LEE S, YOON B. Technology clustering based on evolutionary patterns:the case of information and communications technologies[J]. Technological forecasting and social change, 2011, 78(6):953-967.
[35] KIM E, CHO Y, KIM W. Dynamic patterns of technological convergence in printed electronics technologies:patent citation network[J]. Scientometrics, 2014, 98(2):975-998.
[36] 李姝影, 方曙. 测度技术融合与趋势的数据分析方法研究进展[J].数据分析与知识发现, 2017, 1(7):2-12.
[37] HAN E J, SOHN S Y. Technological convergence in standards for information and communication technologies[J]. Technological forecasting and social change, 2016, 106:1-10.
[38] BLEI D M, NG A Y, JORDAN M I. Latent Dirichlet Allocation[J]. Journal of machine learning research, 2003, 3:993-1022.
[39] HOFMANN T. Unsupervised learning by probabilistic latent semantic analysis[J]. Machine learning, 2001, 42(1-2):177-196.
[40] MEI Q, SHEN X, ZHAI C. Automatic labeling of multinomial topic models[C]//Proceedings of the 13th ACM SIGKDD international conference on knowledge discovery and data mining. New York:ACM, 2007:490-499.
[41] EL-KISHKY A, SONG Y, WANG C, et al. Scalable topical phrase mining from text corpora[J]. Proceedings of the VLDB endowment, 2014, 8(3):305-316.
[42] WANG X, MCCALLUM A, WEI X. Topical n-grams:phrase and topic discovery, with an application to information retrieval[C]//Proceedings of the 2007 Seventh IEEE international conference on data mining. Washington, DC:IEEE Computer Society, 2007:697-702.
[43] BLEI D M, LAFFERTY J D. Visualizing topics with multi-word expressions[EB/OL].[2016-10-28] https://arxiv.org/abs/0907.1013.
[44] MIHALCEA R, TARAU P. TextRank:bringing order into texts[C]//Proceedings of the ACL 2004 on interactive poster and demonstration sessions. Stroudsburg:Association for Computational Linguistics, 2004:20.