Study for the Construction Method of Scientist Profile with Multi-Source Data Fusion

  • Fan Xiaoyu ,
  • Dou Yongxiang ,
  • Zhao Pengwei ,
  • Zhou Xiao
Expand
  • School of Economics and Management, Xidian University, Xi'an 710071

Received date: 2018-02-02

  Revised date: 2018-05-06

  Online published: 2018-08-05

Abstract

[Purpose/significance] In the age of big data, people need to be digitized, and researchers need to digitize them. The establishment of scientists profile is of great importance for scientific research managers to comprehensively understand the information of researchers and objectively evaluate their research level.It can be used as the basis for analyzing the research behavior or recommendation of experts, and improving the efficiency of scientific research management. [Method/process] First of all, the concept of scientists profile is proposed, which is a collection of labels describing the information of scientific researchers.Secondly, based on the data of multiple heterogeneous data sources, such as personal homepage, knowledge network and fund network, this paper proposes a method for the construction of scientists profile with multi-source data.This method formally describes the information of scientific researchers from the three aspects of the basic attribute, scientific research preference and scientific research relationship, and extracts the labels of each dimension to vividly display the profile in a visual way.Finally, the feasibility of this method is illustrated by taking two researchers at home and abroad as examples. [Result/conclusion] The construction of the scientists profile is suitable for researchers at home and abroad, which can fully describe the information of researchers and show them visually.

Cite this article

Fan Xiaoyu , Dou Yongxiang , Zhao Pengwei , Zhou Xiao . Study for the Construction Method of Scientist Profile with Multi-Source Data Fusion[J]. Library and Information Service, 2018 , 62(15) : 31 -40 . DOI: 10.13266/j.issn.0252-3116.2018.15.004

References

[1] 刘学,刘颖,康运廷,等.国立科研机构科研人员评价框架[J].科研管理,2015,36(S1):224-226.
[2] 王飞跃. 知识产生方式和科技决策支撑的重大变革——面向大数据和开源信息的科技态势解析与决策服务[J]. 中国科学院院刊, 2012, 27(5):527-537.
[3] 化柏林.科技信息大数据在情报研究服务中的应用[J].图书情报工作,2017,61(16):150-156.
[4] 宋培彦, 陈白雪, 贤信. 科技专家信息语义模型构建及实证研究[J]. 情报理论与实践, 2017, 40(9):119-124.
[5] EuroCRIS[EB/OL].[2016-02-15].http://www.eurocris.org/.
[6] MOREIRA C, WICHERT A. Finding academic experts on a multisensor approach using Shannon's entropy[J].Expert systems with applications, 2013, 40(14):5740-5754.
[7] YANG L, HU Z, LONG J. Service of searching and ranking in a semantic-based expert information system[C]//Proceedings of the IEEE Asia-Pacific services computing conference.Los Angeles:IEEE Computer Society, 2010:609-614.
[8] DUONG T H, UDDIN M N, NGUYEN C D. Personalized semantic search using ODP:astudy case in academic domain[C]//Proceedings of theinternational conference on computational science and itsapplications. Vietnam:Springer Berlin Heidelberg, 2013:607-619.
[9] 李纲,叶光辉.多源专家特征信息融合研究[J].现代图书情报技术,2014(4):27-33.
[10] 王曰芬, 王雪芬, 杨小晓. 基于社会网络的科技咨询专家库的构建方案与流程设计[J]. 情报学报, 2012, 31(2):116-125.
[11] 陆伟, 韩曙光. 组织专家的检索系统设计与实现[J]. 情报学报, 2008, 27(5):657-663.
[12] TANG J, YAO L, ZHANG D,et al. A combination approach to Web user profiling[J]. ACMtransactions on knowledge discovery from data, 2010, 5(1):1-44.
[13] 化柏林, 李广建. 大数据环境下多源信息融合的理论与应用探讨[J]. 图书情报工作, 2015,59(16):5-10.
[14] COOPER A.交互设计之路[M]. DING C,译.北京:电子工业出版社,2006.
[15] QIU X, ZHANG Q, HUANG X. FudanNLP:a toolkit for Chinese natural language processing[C]//Proceedings of the meeting of the Association for Computational Linguistics:system demonstrations. Sofia:the Association for Computational Linguistics,2013:49-54.
[16] ZHOU L, ZHANG D. NLPIR:atheoretical framework for applying natural language processing to information retrieval[J]. Journal of the American Society for Information Science & Technology, 2003, 54(2):115-123.
[17] 刘挺,车万翔,李正华.语言技术平台[J].中文信息学报,2011,25(6):53-62.
[18] 宋文强. 科技文献作者重名消歧与实体链接[D].哈尔滨:哈尔滨工业大学, 2012.
[19] 章顺瑞,游宏梁.基于层次聚类算法的中文人名消歧[J].现代图书情报技术,2010(11):64-68.
[20] 朱云霞.中文文献题录数据作者重名消解问题研究[J].图书情报工作,2014,58(23):143-148,142.
[21] CHENG Y, QIU G, BU J, et al. Model bloggers' interests based on forgetting mechanism[C]//Proceedings of theinternational conference on World Wide Web. New York:ACM, 2008:1129-1130.
[22] 樊玉敬. 合著论文作者的名誉分配[J]. 情报杂志, 1997(1):37-38.
[23] 赵树庆, 刘永胜. 20种科技期刊2010年论文发表时滞调查[J]. 编辑学报, 2011, 23(6):491-493.
[24] WordArt.com-Word Cloud Art Creator[EB/OL].[2018-01-30].https://wordart.com/.
[25] Tagxedo-Word Cloud with Styles[EB/OL].[2018-01-30]. http://www.tagxedo.com/.
[26] 陈木佩.学术关键词半衰期测度和老化研究[J].科技创业月刊,2010,23(8):156-157.
[27] 徐建忠,朱俊,赵瑞,等.基于CRF算法的航天命名实体识别[J].电子设计工程,2017,25(20):42-46.
[28] 谢志宁. 中文命名实体识别算法研究[D].杭州:浙江大学,2017.
[29] 曾冠明. 基于条件随机场的中文命名实体识别研究[D].北京:北京邮电大学,2009.
[30] 刘颖,姜巍.基于翻译规则的统计机器翻译[J].计算机科学,2013,40(2):214-217.
[31] 刘占一,李生,刘挺,等.利用统计搭配模型改进基于实例的机器翻译[J].软件学报,2012,23(6):1472-1485.
[32] 赵静.基于统计的汉英机器翻译技术的研究[J].电子设计工程,2016,24(21):69-71,75.
[33] 丁亮,何彦青.融合领域知识与深度学习的机器翻译领域自适应研究[J].情报科学,2017,35(10):125-132.
[34] 李婧萱. 基于深度神经网络的统计机器翻译模型研究[D].哈尔滨:哈尔滨工业大学,2016.
[35] 杨南. 基于神经网络学习的统计机器翻译研究[D].合肥:中国科学技术大学,2014.
Outlines

/