Detecting and Characterizing Research Fronts Topics Based on Global-Micro Model

  • Cui Yuhong ,
  • Wang Sa ,
  • Gao Xiaowei ,
  • Yang Hui ,
  • Cao Xuewei
Expand
  • 1. Beijing Institute of Technology Library, Beijing 100081;
    2. National Academy of Innovation Strategy, Beijing 100012;
    3. Relx Group Shanghai District, Shanghai 200040

Received date: 2017-12-08

  Revised date: 2018-04-07

  Online published: 2018-08-05

Abstract

[Purpose/significance] Accurate judgment of research fronts is the national strategic macro-level demand, and scientometrics is commonly used in the quantitative method of research fronts and topic detection. [Method/process] Firstly,literature review is focused on topic detection and research fronts,then concept of the global-micro model and methods in topic creation are introduced in detail, including topic cluster with direct citation,name label with keyword, and selection methodology of topic prominence. It also analyzes nearly 96,000 topics and the top 1% research fronts created by Scival. [Result/conclusion] The global-micro model can identify all topics of different fields at the same time, but there are differences in the research fronts between different subjects, which can not equate topic prominence to the importance of simplicity. There is a moderate correlation between the number of topic papers and the topic ranking. Automatically extracted keywords can be named and described the topic in terms of the subject level and uniqueness. The topic evolution is demonstrated by the related research fronts of graphene, which can be used to identify key events and emerging trends.

Cite this article

Cui Yuhong , Wang Sa , Gao Xiaowei , Yang Hui , Cao Xuewei . Detecting and Characterizing Research Fronts Topics Based on Global-Micro Model[J]. Library and Information Service, 2018 , 62(15) : 75 -82 . DOI: 10.13266/j.issn.0252-3116.2018.15.009

References

[1] 吴菲菲, 杨梓, 黄鲁成. 基于创新性和学科交叉性的研究前沿探测模型——以智能材料领域研究前沿探测为例[J]. 科学学研究, 2015, 33(1):11-20.
[2] GARFIELD E. Citation indexes for science:a new dimension in documentation through association of ideas[J]. Science,1955,122(3159):108-111.
[3] PRICE D J. Networks of scientific papers[J]. Science, 1965, 149(3683):510-515.
[4] KUHN T S. The structure of scientific revolutions[M]. Chicago:University of Chicago Press,1970.
[5] GARFIELD E, SHER I H, TORPIE R J. The use of citation data in writing the history of science[M]. Philadelphia:Institute for Scientific Information, 1964.
[6] KESSLE M M. Comparison of the results of bibliographic coupling and analytic subject indexing[J]. American documentation, 1965,16(3):223-233.
[7] SMALL H, GRIFFITH B C. The structure of scientific literatures, I:identifying and graphing specialties[J]. Social studies of science, 1974(4):17-40.
[8] SMALL H. Tracking and predicting growth areas in science[J]. Scientometrics, 2006, 68(3):595-610.
[9] SMALL H. Visualizing science by citation mapping[J]. Journal of the Association for Information Science & Technology, 1999, 50(9):799-813.
[10] KLAVANS R, BOYACK K W. Quantitative evaluation of large maps of science[J]. Scientometrics, 2006, 68(3):475-499.
[11] 王小梅,邓启平,李国鹏,等.ESI研究前沿的科学图谱及在纳米领域的应用[J].图书情报工作,2017,61(12):106-112.
[12] 周群,周秋菊,冷伏海.生物科学研究前沿演进时序分析[J].中国科学院院刊,2017(4):405-412.
[13] 冷伏海,祝清松.关键研究路径分析方法优化及应用研究——以量子失协领域为例[J].情报科学,2016(4):3-6,12.
[14] BOYACK K W.Using detailed maps of science to identify potential collaborations[J]. Scientometrics, 2009, 79(1):27-44..
[15] KLAVANS R, BOYACK K W. Toward an objective, reliable and accurate method for measuring research leadership[J]. Scientometrics, 2010, 82(3):539-553.
[16] KLAVANS R, BOYACK K W. Using global mapping to create more accurate document-level maps of research fields[J]. Journal of the American Society for Information Science & Technology, 2011, 62(1):1-18.
[17] WALTMAN L, VAN ECK N J. A new methodology for constructing a publication-level classification system of science[J]. Journal of the Association for Information Science & Technology, 2012, 63(12):2378-2392.
[18] BOYACK K W, KLAVANS R. Creation of a highly detailed, dynamic, global model and map of science[J]. Journal of the Association for Information Science & Technology, 2014, 65(4):670-685.
[19] KLAVANS R, BOYACK K W. Which type of citation analysis generates the most accurate taxonomy of scientific and technical knowledge?[J]. Journal of the Association for Information Science & Technology, 2016, 68(4):984-998.
[20] SMALL H, BOYACK K W, KlAVANS R. Identifying emerging topics in science and technology[J]. Research Policy, 2014, 43(8):1450-1467.
[21] 2017研究前沿[EB/OL].[2018-03-17].https://clarivate.com.cn/research_fronts_2017/2017_research_front.pdf.
[22] BOYACK K W, KLAVANS R, SMALL H, et al. Characterizing the emergence of two nanotechnology topics using a contemporaneous global micro-model of science[J]. Journal of Engineering & Technology Management, 2014, 32(32):147-159.
[23] Delving deeper into topic prominence in science[EB/OL].[2018-03-17].https://www.elsevier.com/__data/assets/pdf_file/0006/548313/Topic-Prominence-Advanced-Webinar.pdf.
[24] ECK N J V, WALTMAN L, DEKKER R, et al. A comparison of two techniques for bibliometric mapping:multidimensional scaling and VOS[J]. Journal of the American Society for Information Science & Technology, 2010, 61(12):2405-2416.
[25] KLAVANS R, BOYACK K W. Research portfolio analysis and topic prominence[EB/OL].[2017-11-25]. https://arxiv.org/ftp/arxiv/papers/1709/1709.03453.pdf.
[26] 徐淑妹.面向卓越性的百分位数指标应用研究[D]. 北京:北京理工大学, 2015.
[27] SIEGEL R L, MILLER K D, JEMAL A. Cancer statistics[J]. Cancer Journal for Clinicians, 2016, 66(1):7-30.
Outlines

/