[Purpose/significance] The theory of knowledge element model is used to study the optimization path of the knowledge service effect of government Website, and the visual representation technology is helpful to reduce the operating load and the cognitive load of the information processing of the government users under the big data environment.[Method/process] According to the related knowledge element model, the six-tuple knowledge element representation method and the knowledge element ontology four tuple structures are deduced, which conforms to the characteristics of the information resources of the government Website. The TextRank and HDP algorithms are used to extract the key words and the subject words of the government Website information resources, and the domain experts determine the knowledge according to the extraction results. A visual representation model of government Website information resources knowledge element is constructed, which includes knowledge element ontology database generation and visual knowledge service.[Result/conclusion] The shared bicycle as an example issued by the government Website tests the effectiveness and feasibility of the visual representation model of knowledge element, and it provides a new research idea for the transition from government Website document's coarse-grained service to the knowledge element as a unit of fine-grained service, also with the help of visual knowledge services, the structured navigation of government information and the effect of user interpretation of domain text semantics are enhanced.
Wang Ping
,
Wang Meiyue
,
Wang Yicheng
,
Huang Xinping
. Study on Knowledge Element Model and Visual Representation of Government Website Information Resources[J]. Library and Information Service, 2018
, 62(23)
: 14
-21
.
DOI: 10.13266/j.issn.0252-3116.2018.23.002
[1] 温有奎,焦玉英.基于知识元的知识发现[M].西安:西安电子科技大学出版社,2011.
[2] CNNIC发布第41次《中国互联网络发展状况统计报告》[EB/OL].[2018-03-01].http://www.cac.gov.cn/2018-01/31/c_1122346138.htm.
[3] BOUGUETTAYA A,ELMAGARMID A,MEDJAHED B, et al. Ontology-based support for digital government[C]//Proceedings of 27th international conference on very large data bases.San Francisco:Morgan Kaufmann Publisher,2001:622-636.
[4] PROKOPIADOU G,PAPATHEODOROU C,MOSCHOPOULOS D. Integrating knowledge management tools for government information[J].Government information quarterly,2004(2):170-198.
[5] 高洁,李佳培.电子政务信息资源管理中的领域本体构建研究[J].图书情报工作,2008,52(4):57-61.
[6] 耿瑞利.政府信息领域本体的构建研究[J].图书馆学研究,2010(11):65-69.
[7] 邓峰,刘延滨.基于云计算的政务信息融合平台的研究[J].情报杂志2013,32(9):123-127.
[8] 吕元智.基于云计算的电子政务信息资源共享系统建设研究[J].情报理论与实践,2010,3(4):106-109.
[9] 张玉涛,夏立新.基于主题图的电子政务信息资源整合模型研究[J].情报杂志,2009,28(7):161-165.
[10] 吕元智.基于关联数据的电子政务信息资源语义组织研究[J].图书情报工作,2012,56(21):143-146,130.
[11] 温有奎.基于"知识元"的知识组织与检索[J].计算机工程与应用,2005(1):55-57,91.
[12] 姜永常,杨宏岩,张丽波.基于知识元的知识组织及其系统服务功能研究[J].情报理论与实践,2007,30(1):37-40.
[13] 王宇,李秀秀.基于知识元的期刊文献知识组织研究[C]//2017第二届社会科学与人文国际会议论文集.西安:科学出版集团,2017:9-14.
[14] 毕崇武,王忠义,宋红文.基于知识元的数字图书馆多粒度集成知识服务[J].图书情报工作,2017,61(4):115-122.
[15] SUN L. Knowledge element-based competitive intelligence analytics serving for SWOT situation assessment[C]//8th international symposium on computational intelligence and design.Hangzhou:IEEE,2016:576-579.
[16] 于海峰,王延章,卢小丽,等.基于知识元的突发事件风险熵预测模型研究[J].系统工程学报,2016,31(1):117-126.
[17] 罗贤春,文庭孝,余肖生,等.社会化服务导向的电子政务信息资源共享目录[J].图书情报知识,2009(5):83-89.
[18] 马费成,赖茂生.信息资源管理[M].北京:高等教育出版社,2014.
[19] 周宁,余肖生,刘玮玮,等.基于XML平台的知识元表示与抽取研究[J].中国图书馆学报,2006(3):41-45.
[20] 温有奎,徐端颐,潘龙法.基于XML平台的知识元本体推理[J].情报学报,2004,23(6):643-648.
[21] 高国伟,王亚杰,李永先.知识元表示方法研究[J].现代情报,2015,35(3):15-18,33.
[22] 毕经元,顾新建,吕艳,等.基于知识元链接的汽车零部件知识管理系统[J].浙江大学学报,2009,43(12):2208-2212.
[23] 余洋.组织知识管理中的知识超网络研究[D].大连:大连理工大学,2009.
[24] 国务院办公厅秘书局关于印发政府信息公开目录系统实施指引(试行)的通知[EB/OL].[2018-08-05].http://www.gzw.dl.gov.cn/news/view_60146.html.
[25] YAO Y,ZENG Y, ZHONG N, et al. Knowledge retrieval(KR)[C]//Proceedings of IEEE/WIC/ACM International conference on Web intelligence. Silicon Valley:IEEE, 2007:729-735.
[26] MIHALCEA R,TARAU P. TextRrank:bringing order into texts[C]//Proceedings of the empirical methods in natural language processing. Barcelona:Association for Computational Linguistics,2004:404-411.
[27] TEH Y W, JORDAN M I,BEAL M J,et al. Hierarchical dirichlet processes[J].Publications of the American Statistical Association, 2006,101(476):1566-1581.
[28] 斯腾伯格.认知心理学[M].邵志芳,译.北京:中国轻工业出版社, 2016.
[29] 李洁,毕强.数字图书馆资源知识聚合可视化模型构建研究[J].情报学报,2016,35(12):1273-1284.
[30] 大数据:头部共享单车app2017年12月运营报告[EB/OL].[2018-03-01].http://www.Jiemian.com/article/1905171.html.
[31] 共享单车成消费者投诉新热点,2017年上海收到投诉7978件[EB/OL].[2018-03-01].http://sh.qihoo.com/pc/2s182g1ger?sign=360_e39369d1.
[32] 基于行块分布函数的通用网页正文抽取[EB/OL].[2018-03-20].http://www.docin.com/p-656052252.html.