[Purpose/significance] In order to prevent the outbreak of micro-blog false public opinion to the serious consequences of society, the paper categorized the key nodes in micro-blog, to stop the nodes that maliciously incite the masses' emotions in time, and prevent more micro-blog users from being misled, and guide the micro-blog users by different ways of thinking. So as to better purify the micro-blog public opinion environment. [Method/process] The paper used super network and dynamic network analysis method to identify key nodes. Through analyzing their sentiment tendency, different leading strategies were finally provided. [Result/conclusion] There are five kinds of key nodes in the life cycle of micro-blog public opinion. Ideological guidance can be divided into intelligent guidance and wisdom guidance.
Wang Dan
,
Zhang Haitao
,
Liu Yashu
,
Ren Liang
. Sentiment Analysis and Ideological Guidance of Key Nodes in Micro-blog Public Opinion[J]. Library and Information Service, 2019
, 63(4)
: 15
-22
.
DOI: 10.13266/j.issn.0252-3116.2019.04.002
[1] 邹凯,左珊,陈旸,等.基于网络舆情的政府信息服务公众满意度评价研究[J].情报科学,2016,34(2):45-49.
[2] 赵剑华,万克文.基于信息传播模型——SIR传染病模型的社交网络舆情传播动力学模型研究[J].情报科学,2017,35(12):34-38.
[3] 王晰巍,邢云菲,赵丹,等.基于社会网络分析的移动环境下网络舆情信息传播研究——以新浪微博"雾霾"话题为例[J].图书情报工作,2015,59(7):14-22.
[4] 李金海,何有世,熊强.基于大数据技术的网络舆情文本挖掘研究[J].情报杂志,2014,33(10):1-6,13.
[5] 杨长春,王天允,叶施仁.微博意见领袖影响力评价指标体系研究——基于媒介影响力视角[J].情报杂志,2014,33(8):178-183,202.
[6] 陈远,刘欣宇.基于社会网络分析的意见领袖识别研究[J].情报科学,2015,33(4):13-19,92.
[7] 蒋侃,唐竹发.微博情境下网络舆情关键节点识别及扩散模式分析[J].图书情报工作,2015,59(20):105-111.
[8] 王曰芬,杭伟梁,丁洁.微博舆情社会网络关键节点识别与应用研究[J].情报资料工作,2016(3):6-11.
[9] 张磊,马静,李丹丹,等.语义社会网络的超网络模型构建及关键节点自动化识别方法研究[J].现代图书情报技术,2016(3):8-17.
[10] 饶浩,陈海媚.主成分分析与BP神经网络在微博舆情预判中的应用[J].现代情报,2016,36(7):58-62,70.
[11] 高承实,荣星,陈越.微博舆情监测指标体系研究[J].情报杂志,2011,30(9):66-70.
[12] PANG B, LILLIAN L, VAITHYANATHAN S. Thumbs up? sentiment classification using machine learning techniques[C]//EMNLP'02 Proceedings of the ACL-02 conference on empirical methods in natural language processing. Pennsylvania:ALC,2002:79-86.
[13] NASUKAWA T, YI J. Sentiment analysis:capturing favorability using natural language processing[C]//Proceedings of the 2nd international conference on knowledge capture. New York:ACM,2003:70-77.
[14] WILSON T,WIEBE J,HOFFMANN P. Recognizing contextual polarity:an exploration of features for phrase-level sentiment analysis[J].Computational linguistics,2009, 35(3):399-433.
[15] SISMONDO S. Key opinion leaders and the corruption of medical knowledge:what the sunshine act will and won't cast light on[J].Journal of law medicine & ethics,2013, 41(3):635-643.
[16] URBAN J,BULKOW K. Tracing public opinion online一an example of use for social network analysis in communication research[J].Procedia social and behavioral sciences,2013,100(7):108-126.
[17] CHIERICHETTIA F,LATTANZIB S,PANCONESIB A. Rumor spreading in social[J].Theoretical computer science,2011,412(24):2602-2610.
[18] 胡亚雪. 面向微博舆情的用户挖掘及消息传播预测关键技术研究[D].哈尔滨:哈尔滨工程大学,2016.
[19] 马宁,刘怡君.基于超网络中超边排序算法的网络舆论领袖识别[J].系统工程,2013,31(9):1-10.
[20] 梁晓贺,田儒雅,吴蕾,等.基于超网络的微博舆情主题挖掘方法[J].情报理论与实践,2017,40(10):100-105.
[21] BREIGER R,CARLEY K M,PATTISON P.Dynamic social net-work modelling and analysis:workshop summary and papers[M].Washington:The National Academies Press,2003.
[22] 蒋知义,马王荣,邹凯,等.基于情感倾向性分析的网络舆情情感演化特征研究[J].现代情报,2018,38(4):50-57.
[23] 许军林.高校图书馆学科服务选择性信息推送策略研究[J].情报理论与实践,2014,37(4):110-114.
[24] 方曦,孙绍勇.网络圈群视域下高校青年思想引领的路径探析[J].思想理论教育导刊,2017(10):122-126.
[25] 贾可卿.思想引领的三种方式[J].贵州社会科学,2016(6):4-9.