The Discovery of Subject Basic Vocabulary from the Perspective of Keyword Co-occurrence Network

  • Yu Fengchang ,
  • Lu Wei
Expand
  • School of Information Management, Wuhan University, Wuhan 430072

Received date: 2018-06-20

  Revised date: 2018-11-27

  Online published: 2019-05-05

Abstract

[Purpose/significance] Subject basic vocabulary is an important cornerstone of subject knowledge. It is of great significance to understand the composition of the knowledge system of discipline, to clarify the knowledge context of discipline and to promote discipline education. However, for a long time, it mainly relies on manual summarization and cannot be automatically mined within a certain discipline.[Method/process] This paper proposes a method to use the keyword co-occurrence network to discover basic vocabularies within the discipline. This method takes advantage of the relatively low word frequency of the basic vocabulary and the relatively high degree of centrality in the network, and automatically obtains the subject basic vocabulary from the subject keyword dataset.[Result/conclusion] The validity of this method is verified by using the keyword datasets in the fields of computer(full dataset), user interfaces and information search and retrieval from ACM's 1969-2012 theses. Moreover, this method can use simpler steps to discover the global basic vocabulary in the data set.

Cite this article

Yu Fengchang , Lu Wei . The Discovery of Subject Basic Vocabulary from the Perspective of Keyword Co-occurrence Network[J]. Library and Information Service, 2019 , 63(9) : 95 -100 . DOI: 10.13266/j.issn.0252-3116.2019.09.010

References

[1] 温海港.探讨高中阶段化学基础概念的教学[J].考试周刊,2015(56):131.
[2] 马晓敏.初中化学基础概念知识网络构建——思维导图在教学和学习中的使用[J].赤子(上中旬),2015(6):317.
[3] 余静.向基础概念要成绩——论高中思想政治概念教学[J].当代教研论丛,2015(2):116,118.
[4] 贾李蓉,李海燕,于彤,等.中医药学语言系统基础词库分析[J].中国数字医学,2014,9(2):66-67.
[5] 翟颖华.新一代两岸初级汉语词表比较及引发的思考[J].华文教学与研究,2015(2):43-52.
[6] CHEN P, XIE H, MASLOV S, et al. Finding scientific gems with Google's pagerank algorithm[J]. Journal of informetrics, 2007, 1(1):8-15.
[7] EOM Y H, ARAGÓN P, LANIADO D, et al. Interactions of cultures and top people of Wikipedia from ranking of 24 language editions[J]. PLOS ONE, 2015, 10(3):e0114825.
[8] MUKHERJEE S. Identifying the greatest team and captain-a complex network approach to cricket matches[J]. Physica a:statistical mechanics and its applications, 2012, 391(23):6066-6076.
[9] MIMNO D, MCCALLUM A. Mining a digital library for influential authors[C]//Proceedings of the 7th ACM/IEEE-CS joint conference on digital libraries. New York:ACM, 2007:105-106.
[10] LIN L, XU Z, DING Y, et al. Finding topic-level experts in scholarly networks[J]. Scientometrics, 2013, 97(3):797-819.
[11] BIGONHA C, CARDOSO T N C, MORO M M, et al. Sentiment-based influence detection on Twitter[J]. Journal of the brazilian computer society, 2012, 18(3):169-183.
[12] DING Y. Topic-based PageRank on author co-citation networks[J]. Journal of the Association for Information Science and Technology, 2011, 62(3):449-466.
[13] CHEN Y L, CHEN X H. An evolutionary pagerank approach for journal ranking with expert judgements[J]. Journal of information science, 2011, 37(3):254-272.
[14] KOZAREVA Z, HOVY E. Insights from network structure for text mining[C]//Proceedings of the 49th annual meeting of the association for computational linguistics:human language technologies. Stroudsburg:Association for Computational Linguistics, 2011:1616-1625.
[15] 曲佳彬, 欧石燕. 基于主题过滤与主题关联的学科主题演化分析[J]. 数据分析与知识发现, 2018, 2(1):64-75.
[16] 唐果媛. 基于共词分析法的学科主题演化研究方法的构建[J]. 图书情报工作, 2017, 61(23):100-107.
[17] JIANG X, SUN X, ZHUGE H. Graph-based algorithms for ranking researchers:not all swans are white![J]. Scientometrics, 2013, 96(3):743-759.
[18] PAGE L, BRIN S, MOTWANI R, et al.The pagerank citation ranking:bringing order to the Web[R]. Stanford InfoLab, 1999.
Outlines

/